Files
illusion-arena-engine/code/renderer_oa/tr_shade_calc.c

2222 lines
51 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade_calc.c
#include "tr_local.h"
#if idppc_altivec && !defined(MACOS_X)
#include <altivec.h>
#endif
#define WAVEVALUE( table, base, amplitude, phase, freq ) ((base) + table[ ri.ftol( ( ( (phase) + tess.shaderTime * (freq) ) * FUNCTABLE_SIZE ) ) & FUNCTABLE_MASK ] * (amplitude))
static float *TableForFunc( genFunc_t func )
{
switch ( func )
{
case GF_SIN:
return tr.sinTable;
case GF_TRIANGLE:
return tr.triangleTable;
case GF_SQUARE:
return tr.squareTable;
case GF_SAWTOOTH:
return tr.sawToothTable;
case GF_INVERSE_SAWTOOTH:
return tr.inverseSawToothTable;
case GF_NONE:
default:
break;
}
ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'", func, tess.shader->name );
return NULL;
}
/*
** EvalWaveForm
**
** Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
*/
static float EvalWaveForm( const waveForm_t *wf )
{
float *table;
table = TableForFunc( wf->func );
return WAVEVALUE( table, wf->base, wf->amplitude, wf->phase, wf->frequency );
}
static float EvalWaveFormClamped( const waveForm_t *wf )
{
float glow = EvalWaveForm( wf );
if ( glow < 0 )
{
return 0;
}
if ( glow > 1 )
{
return 1;
}
return glow;
}
/*
** RB_CalcStretchTexCoords
*/
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
{
float p;
texModInfo_t tmi;
p = 1.0f / EvalWaveForm( wf );
tmi.matrix[0][0] = p;
tmi.matrix[1][0] = 0;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexCoords( &tmi, st );
}
// leilei - this is for celshading
void RB_CalcLightscaleTexCoords(float *st )
{
float p;
texModInfo_t tmi;
float light = 1.0f;
#if 0
vec3_t lightDir;
vec3_t ambientLight;
VectorCopy( backEnd.currentEntity->ambientLight, ambientLight );
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
#endif
vec3_t directedLight;
VectorCopy( backEnd.currentEntity->directedLight, directedLight );
//light = DotProduct (directedLight, lightDir);
light = ((directedLight[0] + directedLight[1] + directedLight[2]) * 0.333) / 255;
if (light > 1)
light = 1.0f;
p = 1.0f - (light * 0.7f);
tmi.matrix[0][0] = p;
tmi.matrix[1][0] = 0;
tmi.translate[0] = 0.5f - 0.5f * p;
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = p;
tmi.translate[1] = 0.5f - 0.5f * p;
RB_CalcTransformTexCoords( &tmi, st );
}
/*
====================================================================
DEFORMATIONS
====================================================================
*/
/*
========================
RB_CalcDeformVertexes
========================
*/
void RB_CalcDeformVertexes( deformStage_t *ds )
{
int i;
vec3_t offset;
float scale;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
float *table;
if ( ds->deformationWave.frequency == 0 )
{
scale = EvalWaveForm( &ds->deformationWave );
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
{
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
else
{
table = TableForFunc( ds->deformationWave.func );
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
{
float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;
scale = WAVEVALUE( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase + off,
ds->deformationWave.frequency );
VectorScale( normal, scale, offset );
xyz[0] += offset[0];
xyz[1] += offset[1];
xyz[2] += offset[2];
}
}
}
/*
=========================
RB_CalcDeformNormals
Wiggle the normals for wavy environment mapping
=========================
*/
void RB_CalcDeformNormals( deformStage_t *ds ) {
int i;
float scale;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) {
scale = 0.98f;
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 0 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 1 ] += ds->deformationWave.amplitude * scale;
scale = 0.98f;
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 2 ] += ds->deformationWave.amplitude * scale;
VectorNormalizeFast( normal );
}
}
void RB_CalcDeformNormalsEvenMore( deformStage_t *ds ) {
int i;
float scale;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) {
scale = 5.98f;
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 0 ] += ds->deformationWave.amplitude * scale;
scale = 5.98f;
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 1 ] += ds->deformationWave.amplitude * scale;
scale = 5.98f;
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
tess.shaderTime * ds->deformationWave.frequency );
normal[ 2 ] += ds->deformationWave.amplitude * scale;
VectorNormalizeFast( normal );
}
}
/*
========================
RB_CalcBulgeVertexes
========================
*/
void OldRB_CalcBulgeVertexes( deformStage_t *ds ) {
int i;
const float *st = ( const float * ) tess.texCoords[0];
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
float now;
now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 4, normal += 4 ) {
int off;
float scale;
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
xyz[0] += normal[0] * scale;
xyz[1] += normal[1] * scale;
xyz[2] += normal[2] * scale;
}
}
// leilei - adapted a bit from the jk2 source, for performance
void RB_CalcBulgeVertexes( deformStage_t *ds ) {
int i;
float *xyz = ( float * ) tess.xyz;
float *normal = ( float * ) tess.normal;
if ( ds->bulgeSpeed == 0.0f && ds->bulgeWidth == 0.0f )
{
// We don't have a speed and width, so just use height to expand uniformly
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
{
xyz[0] += normal[0] * ds->bulgeHeight;
xyz[1] += normal[1] * ds->bulgeHeight;
xyz[2] += normal[2] * ds->bulgeHeight;
}
}
else
{
const float *st = ( const float * ) tess.texCoords[0];
float now;
now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 4, normal += 4 ) {
int off;
float scale;
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
xyz[0] += normal[0] * scale;
xyz[1] += normal[1] * scale;
xyz[2] += normal[2] * scale;
}
}
}
/*
======================
RB_CalcMoveVertexes
A deformation that can move an entire surface along a wave path
======================
*/
void RB_CalcMoveVertexes( deformStage_t *ds ) {
int i;
float *xyz;
float *table;
float scale;
vec3_t offset;
table = TableForFunc( ds->deformationWave.func );
scale = WAVEVALUE( table, ds->deformationWave.base,
ds->deformationWave.amplitude,
ds->deformationWave.phase,
ds->deformationWave.frequency );
VectorScale( ds->moveVector, scale, offset );
xyz = ( float * ) tess.xyz;
for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) {
VectorAdd( xyz, offset, xyz );
}
}
/*
=============
DeformText
Change a polygon into a bunch of text polygons
=============
*/
void DeformText( const char *text ) {
int i;
vec3_t origin, width, height;
int len;
int ch;
byte color[4];
float bottom, top;
vec3_t mid;
height[0] = 0;
height[1] = 0;
height[2] = -1;
CrossProduct( tess.normal[0], height, width );
// find the midpoint of the box
VectorClear( mid );
bottom = 999999;
top = -999999;
for ( i = 0 ; i < 4 ; i++ ) {
VectorAdd( tess.xyz[i], mid, mid );
if ( tess.xyz[i][2] < bottom ) {
bottom = tess.xyz[i][2];
}
if ( tess.xyz[i][2] > top ) {
top = tess.xyz[i][2];
}
}
VectorScale( mid, 0.25f, origin );
// determine the individual character size
height[0] = 0;
height[1] = 0;
height[2] = ( top - bottom ) * 0.5f;
VectorScale( width, height[2] * -0.75f, width );
// determine the starting position
len = strlen( text );
VectorMA( origin, (len-1), width, origin );
// clear the shader indexes
tess.numIndexes = 0;
tess.numVertexes = 0;
color[0] = color[1] = color[2] = color[3] = 255;
// draw each character
for ( i = 0 ; i < len ; i++ ) {
ch = text[i];
ch &= 255;
if ( ch != ' ' ) {
int row, col;
float frow, fcol, size;
row = ch>>4;
col = ch&15;
frow = row*0.0625f;
fcol = col*0.0625f;
size = 0.0625f;
RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
}
VectorMA( origin, -2, width, origin );
}
}
/*
==================
GlobalVectorToLocal
==================
*/
static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) {
out[0] = DotProduct( in, backEnd.or.axis[0] );
out[1] = DotProduct( in, backEnd.or.axis[1] );
out[2] = DotProduct( in, backEnd.or.axis[2] );
}
/*
=====================
AutospriteDeform
Assuming all the triangles for this shader are independant
quads, rebuild them as forward facing sprites
=====================
*/
static void AutospriteDeform( void ) {
int i;
int oldVerts;
float *xyz;
vec3_t mid, delta;
float radius;
vec3_t left, up;
vec3_t leftDir, upDir;
if ( tess.numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count\n", tess.shader->name );
}
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count\n", tess.shader->name );
}
oldVerts = tess.numVertexes;
tess.numVertexes = 0;
tess.numIndexes = 0;
if ( backEnd.currentEntity != &tr.worldEntity ) {
GlobalVectorToLocal( backEnd.viewParms.or.axis[1], leftDir );
GlobalVectorToLocal( backEnd.viewParms.or.axis[2], upDir );
} else {
VectorCopy( backEnd.viewParms.or.axis[1], leftDir );
VectorCopy( backEnd.viewParms.or.axis[2], upDir );
}
for ( i = 0 ; i < oldVerts ; i+=4 ) {
// find the midpoint
xyz = tess.xyz[i];
mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);
VectorSubtract( xyz, mid, delta );
radius = VectorLength( delta ) * 0.707f; // / sqrt(2)
VectorScale( leftDir, radius, left );
VectorScale( upDir, radius, up );
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
// compensate for scale in the axes if necessary
if ( backEnd.currentEntity->e.nonNormalizedAxes ) {
float axisLength;
axisLength = VectorLength( backEnd.currentEntity->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0f / axisLength;
}
VectorScale(left, axisLength, left);
VectorScale(up, axisLength, up);
}
RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
}
}
/*
=====================
Autosprite2Deform
Autosprite2 will pivot a rectangular quad along the center of its long axis
=====================
*/
int edgeVerts[6][2] = {
{ 0, 1 },
{ 0, 2 },
{ 0, 3 },
{ 1, 2 },
{ 1, 3 },
{ 2, 3 }
};
static void Autosprite2Deform( void ) {
int i, j, k;
int indexes;
float *xyz;
vec3_t forward;
if ( tess.numVertexes & 3 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name );
}
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name );
}
if ( backEnd.currentEntity != &tr.worldEntity ) {
GlobalVectorToLocal( backEnd.viewParms.or.axis[0], forward );
} else {
VectorCopy( backEnd.viewParms.or.axis[0], forward );
}
// this is a lot of work for two triangles...
// we could precalculate a lot of it is an issue, but it would mess up
// the shader abstraction
for ( i = 0, indexes = 0 ; i < tess.numVertexes ; i+=4, indexes+=6 ) {
float lengths[2];
int nums[2];
vec3_t mid[2];
vec3_t major, minor;
float *v1, *v2;
// find the midpoint
xyz = tess.xyz[i];
// identify the two shortest edges
nums[0] = nums[1] = 0;
lengths[0] = lengths[1] = 999999;
for ( j = 0 ; j < 6 ; j++ ) {
float l;
vec3_t temp;
v1 = xyz + 4 * edgeVerts[j][0];
v2 = xyz + 4 * edgeVerts[j][1];
VectorSubtract( v1, v2, temp );
l = DotProduct( temp, temp );
if ( l < lengths[0] ) {
nums[1] = nums[0];
lengths[1] = lengths[0];
nums[0] = j;
lengths[0] = l;
} else if ( l < lengths[1] ) {
nums[1] = j;
lengths[1] = l;
}
}
for ( j = 0 ; j < 2 ; j++ ) {
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
mid[j][0] = 0.5f * (v1[0] + v2[0]);
mid[j][1] = 0.5f * (v1[1] + v2[1]);
mid[j][2] = 0.5f * (v1[2] + v2[2]);
}
// find the vector of the major axis
VectorSubtract( mid[1], mid[0], major );
// cross this with the view direction to get minor axis
CrossProduct( major, forward, minor );
VectorNormalize( minor );
// re-project the points
for ( j = 0 ; j < 2 ; j++ ) {
float l;
v1 = xyz + 4 * edgeVerts[nums[j]][0];
v2 = xyz + 4 * edgeVerts[nums[j]][1];
l = 0.5 * sqrt( lengths[j] );
// we need to see which direction this edge
// is used to determine direction of projection
for ( k = 0 ; k < 5 ; k++ ) {
if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
break;
}
}
if ( k == 5 ) {
VectorMA( mid[j], l, minor, v1 );
VectorMA( mid[j], -l, minor, v2 );
} else {
VectorMA( mid[j], -l, minor, v1 );
VectorMA( mid[j], l, minor, v2 );
}
}
}
}
/*
=====================
RB_DeformTessGeometry
=====================
*/
void RB_DeformTessGeometry( void ) {
int i;
deformStage_t *ds;
for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
ds = &tess.shader->deforms[ i ];
switch ( ds->deformation ) {
case DEFORM_NONE:
break;
case DEFORM_NORMALS:
RB_CalcDeformNormals( ds );
break;
case DEFORM_WAVE:
RB_CalcDeformVertexes( ds );
break;
case DEFORM_BULGE:
RB_CalcBulgeVertexes( ds );
break;
case DEFORM_MOVE:
RB_CalcMoveVertexes( ds );
break;
case DEFORM_PROJECTION_SHADOW:
RB_ProjectionShadowDeform();
break;
case DEFORM_AUTOSPRITE:
AutospriteDeform();
break;
case DEFORM_AUTOSPRITE2:
Autosprite2Deform();
break;
case DEFORM_TEXT0:
case DEFORM_TEXT1:
case DEFORM_TEXT2:
case DEFORM_TEXT3:
case DEFORM_TEXT4:
case DEFORM_TEXT5:
case DEFORM_TEXT6:
case DEFORM_TEXT7:
DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] );
break;
default:
break;
}
}
}
/*
====================================================================
COLORS
====================================================================
*/
/*
** RB_CalcColorFromEntity
*/
void RB_CalcColorFromEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
int c;
if ( !backEnd.currentEntity )
return;
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
/*
** RB_CalcColorFromOneMinusEntity
*/
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
{
int i;
int *pColors = ( int * ) dstColors;
unsigned char invModulate[4];
int c;
if ( !backEnd.currentEntity )
return;
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
c = * ( int * ) invModulate;
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
{
*pColors = c;
}
}
/*
** RB_CalcAlphaFromEntity
*/
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
}
}
/*
** RB_CalcAlphaFromOneMinusEntity
*/
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
{
int i;
if ( !backEnd.currentEntity )
return;
dstColors += 3;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
}
}
/*
** RB_CalcWaveColor
*/
void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors )
{
int i;
int v;
float glow;
int *colors = ( int * ) dstColors;
byte color[4];
if ( wf->func == GF_NOISE ) {
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude;
} else {
glow = EvalWaveForm( wf ) * tr.identityLight;
}
if ( glow < 0 ) {
glow = 0;
}
else if ( glow > 1 ) {
glow = 1;
}
v = ri.ftol(255 * glow);
color[0] = color[1] = color[2] = v;
color[3] = 255;
v = *(int *)color;
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
*colors = v;
}
}
/*
** RB_CalcWaveAlpha
*/
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
{
int i;
int v;
float glow;
glow = EvalWaveFormClamped( wf );
v = 255 * glow;
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
{
dstColors[3] = v;
}
}
/*
** RB_CalcModulateColorsByFog
*/
void RB_CalcModulateColorsByFog( unsigned char *colors ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0] );
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[0] *= f;
colors[1] *= f;
colors[2] *= f;
}
}
/*
** RB_CalcModulateAlphasByFog
*/
void RB_CalcModulateAlphasByFog( unsigned char *colors ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0] );
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[3] *= f;
}
}
/*
** RB_CalcModulateRGBAsByFog
*/
void RB_CalcModulateRGBAsByFog( unsigned char *colors ) {
int i;
float texCoords[SHADER_MAX_VERTEXES][2];
// calculate texcoords so we can derive density
// this is not wasted, because it would only have
// been previously called if the surface was opaque
RB_CalcFogTexCoords( texCoords[0] );
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
colors[0] *= f;
colors[1] *= f;
colors[2] *= f;
colors[3] *= f;
}
}
/*
====================================================================
TEX COORDS
====================================================================
*/
/*
========================
RB_CalcFogTexCoords
To do the clipped fog plane really correctly, we should use
projected textures, but I don't trust the drivers and it
doesn't fit our shader data.
========================
*/
void RB_CalcFogTexCoords( float *st ) {
int i;
float *v;
float s, t;
float eyeT;
qboolean eyeOutside;
fog_t *fog;
vec3_t local;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
fog = tr.world->fogs + tess.fogNum;
// all fogging distance is based on world Z units
VectorSubtract( backEnd.or.origin, backEnd.viewParms.or.origin, local );
fogDistanceVector[0] = -backEnd.or.modelMatrix[2];
fogDistanceVector[1] = -backEnd.or.modelMatrix[6];
fogDistanceVector[2] = -backEnd.or.modelMatrix[10];
fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.or.axis[0] );
// scale the fog vectors based on the fog's thickness
fogDistanceVector[0] *= fog->tcScale;
fogDistanceVector[1] *= fog->tcScale;
fogDistanceVector[2] *= fog->tcScale;
fogDistanceVector[3] *= fog->tcScale;
// rotate the gradient vector for this orientation
if ( fog->hasSurface ) {
fogDepthVector[0] = fog->surface[0] * backEnd.or.axis[0][0] +
fog->surface[1] * backEnd.or.axis[0][1] + fog->surface[2] * backEnd.or.axis[0][2];
fogDepthVector[1] = fog->surface[0] * backEnd.or.axis[1][0] +
fog->surface[1] * backEnd.or.axis[1][1] + fog->surface[2] * backEnd.or.axis[1][2];
fogDepthVector[2] = fog->surface[0] * backEnd.or.axis[2][0] +
fog->surface[1] * backEnd.or.axis[2][1] + fog->surface[2] * backEnd.or.axis[2][2];
fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.or.origin, fog->surface );
eyeT = DotProduct( backEnd.or.viewOrigin, fogDepthVector ) + fogDepthVector[3];
} else {
eyeT = 1; // non-surface fog always has eye inside
}
// see if the viewpoint is outside
// this is needed for clipping distance even for constant fog
if ( eyeT < 0 ) {
eyeOutside = qtrue;
} else {
eyeOutside = qfalse;
}
fogDistanceVector[3] += 1.0/512;
// calculate density for each point
for (i = 0, v = tess.xyz[0] ; i < tess.numVertexes ; i++, v += 4) {
// calculate the length in fog
s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3];
t = DotProduct( v, fogDepthVector ) + fogDepthVector[3];
// partially clipped fogs use the T axis
if ( eyeOutside ) {
if ( t < 1.0 ) {
t = 1.0/32; // point is outside, so no fogging
} else {
t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane
}
} else {
if ( t < 0 ) {
t = 1.0/32; // point is outside, so no fogging
} else {
t = 31.0/32;
}
}
st[0] = s;
st[1] = t;
st += 2;
}
}
/*
** RB_CalcEnvironmentTexCoords
*/
void RB_CalcEnvironmentTexCoords( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected;
float d;
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
/*
** RB_CalcEnvironmentTexCoordsNew
This one also is offset by origin and axis which makes it look better on moving
objects and weapons. May be slow.
*/
void RB_CalcEnvironmentTexCoordsNew( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected, where, what, why, who;
float d = 0.0f;
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.axis[0], v, what);
VectorSubtract (backEnd.or.axis[1], v, why);
VectorSubtract (backEnd.or.axis[2], v, who);
VectorSubtract (backEnd.or.origin, v, where);
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
VectorNormalizeFast (where);
VectorNormalizeFast (what);
VectorNormalizeFast (why);
VectorNormalizeFast (who);
d = DotProduct (normal, viewer);
if ( backEnd.currentEntity == &tr.worldEntity ){
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
}
else
{
reflected[0] = normal[0]*2*d - viewer[0] - (where[0] * 5) + (what[0] * 4);
reflected[1] = normal[1]*2*d - viewer[1] - (where[1] * 5) + (why[1] * 4);
reflected[2] = normal[2]*2*d - viewer[2] - (where[2] * 5) + (who[2] * 4);
}
st[0] = 0.33 + reflected[1] * 0.33;
st[1] = 0.33 - reflected[2] * 0.33;
}
}
/*
** RB_CalcEnvironmentTexCoordsHW
Hardware-native cubemapping (or sphere mapping if the former is unsupported)
adapted from this tremulous patch by Odin
NOTE: THIS BREAKS OTHER TCMODS IN A STAGE
*/
void RB_CalcEnvironmentTexCoordsHW()
{
qglTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
qglTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
qglTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
qglEnable(GL_TEXTURE_GEN_S);
qglEnable(GL_TEXTURE_GEN_T);
qglEnable(GL_TEXTURE_GEN_R);
}
/*
** RB_CalcEnvironmentTexCoordsJO
from JediOutcast source
*/
void RB_CalcEnvironmentTexCoordsJO( float *st )
{
int i;
float *v, *normal;
vec3_t viewer;
float d;
v = tess.xyz[0];
normal = tess.normal[0];
if (backEnd.currentEntity && backEnd.currentEntity->e.renderfx&RF_FIRST_PERSON) //this is a view model so we must use world lights instead of vieworg
{
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
d = DotProduct (normal, backEnd.currentEntity->lightDir);
st[0] = normal[0]*d - backEnd.currentEntity->lightDir[0];
st[1] = normal[1]*d - backEnd.currentEntity->lightDir[1];
}
} else { //the normal way
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
st[0] = normal[0]*d - 0.5*viewer[0];
st[1] = normal[1]*d - 0.5*viewer[1];
}
}
}
/*
** RB_CalcEnvironmentTexCoordsR
Inpsired by Revolution, reflect from the sun light position instead
*/
void RB_CalcEnvironmentTexCoordsR( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected, sunned;
float d;
vec3_t sundy;
float size;
float dist;
vec3_t vec1, vec2;
v = tess.xyz[0];
normal = tess.normal[0];
dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
size = dist * 0.4;
VectorScale( tr.sunDirection, dist, sundy);
PerpendicularVector( vec1, tr.sunDirection );
CrossProduct( tr.sunDirection, vec1, vec2 );
VectorScale( vec1, size, vec1 );
VectorScale( vec2, size, vec2 );
v = tess.xyz[0];
normal = tess.normal[0];
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
VectorSubtract (sundy, v, sunned);
VectorNormalizeFast (sunned);
d = DotProduct (normal, viewer) + DotProduct (viewer, sunned);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
/*
** RB_CalcCelTexCoords
Butchered from JediOutcast source, note that this is not the same method as ZEQ2.
*/
void RB_CalcCelTexCoords( float *st )
{
int i;
float *v, *normal;
vec3_t viewer, reflected, lightdir, directedLight;
float d, l, p;
v = tess.xyz[0];
normal = tess.normal[0];
VectorCopy(backEnd.currentEntity->lightDir, lightdir);
VectorCopy(backEnd.currentEntity->directedLight, directedLight);
float light = (directedLight[0] + directedLight[1] + directedLight[2] / 3);
p = 1.0f - (light / 255);
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
l = DotProduct (normal, backEnd.currentEntity->lightDir);
if (d < 0)d = 0;
if (l < 0)l = 0;
if (d < p)d = p;
if (l < p)l = p;
reflected[0] = normal[0]*1*(d+l) - (viewer[0] + lightdir[0] );
reflected[1] = normal[1]*1*(d+l) - (viewer[1] + lightdir[1] );
reflected[2] = normal[2]*1*(d+l) - (viewer[2] + lightdir[2] );
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
/*
** RB_CalcEnvironmentCelShadeTexCoords
**
** RiO; celshade 1D environment map
*/
void RB_CalcEnvironmentCelShadeTexCoords( float *st )
{
int i;
float *v, *normal;
vec3_t lightDir;
float d;
normal = tess.normal[0];
v = tess.xyz[0];
// Calculate only once
// VectorCopy( backEnd.currentEntity->lightDir, lightDir );
// if ( backEnd.currentEntity == &tr.worldEntity )
// VectorSubtract( lightOrigin, v, lightDir );
// else
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
VectorNormalizeFast( lightDir );
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 ) {
d= DotProduct( normal, lightDir );
st[0] = 0.5 + d * 0.5;
st[1] = 0.5;
}
}
/*
** RB_CalcTurbulentTexCoords
*/
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
{
int i;
float now;
now = ( wf->phase + tess.shaderTime * wf->frequency );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
}
}
/*
** RB_CalcScaleTexCoords
*/
void RB_CalcScaleTexCoords( const float scale[2], float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] *= scale[0];
st[1] *= scale[1];
}
}
/*
** RB_CalcScrollTexCoords
*/
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
{
int i;
float timeScale = tess.shaderTime;
float adjustedScrollS, adjustedScrollT;
adjustedScrollS = scrollSpeed[0] * timeScale;
adjustedScrollT = scrollSpeed[1] * timeScale;
// clamp so coordinates don't continuously get larger, causing problems
// with hardware limits
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
st[0] += adjustedScrollS;
st[1] += adjustedScrollT;
}
}
/*
** RB_CalcTransformTexCoords
*/
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st )
{
int i;
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
{
float s = st[0];
float t = st[1];
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
}
}
/*
** RB_CalcRotateTexCoords
*/
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
{
float timeScale = tess.shaderTime;
float degs;
int index;
float sinValue, cosValue;
texModInfo_t tmi;
degs = -degsPerSecond * timeScale;
index = degs * ( FUNCTABLE_SIZE / 360.0f );
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
tmi.matrix[0][0] = cosValue;
tmi.matrix[1][0] = -sinValue;
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
tmi.matrix[0][1] = sinValue;
tmi.matrix[1][1] = cosValue;
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
RB_CalcTransformTexCoords( &tmi, st );
}
/*
** RB_CalcAtlasTexCoords
*/
// TODO: refactor. There is a loop in there for now
void RB_CalcAtlasTexCoords( const atlas_t *at, float *st )
{
texModInfo_t tmi;
int w = (int)at->width;
int h = (int)at->height;
int framex = 0;
int framey = 0;
// modes:
// 0 - static / animated
// 1 - entity alpha (i.e. cgame rocket smoke)
if (at->mode == 1) // follow alpha modulation
{
int frametotal = w * h;
float alha = ((0.25+backEnd.currentEntity->e.shaderRGBA[3]) / (tr.identityLight * 256.0f));
int framethere = frametotal - ((frametotal * alha));
int f;
framex = 0;
for(f=0; f<framethere; f++)
{
framex +=1;
if (framex >= w){
framey +=1; // next row!
framex = 0; // reset column
}
}
}
else // static/animated
{
//
// Process frame sequence for animation
//
{
int framethere = (tess.shaderTime * at->fps) + at->frame;
int f;
framex = 0;
for(f=0; f<framethere; f++)
{
framex +=1;
if (framex >= w){
framey +=1; // next row!
framex = 0; // reset column
}
if (framey >= h){
framey = 0; // reset row
framex = 0; // reset column
}
}
}
}
//
// now use that information to alter our coordinates
//
tmi.matrix[0][0] = 1.0f / w;
tmi.matrix[1][0] = 0;
tmi.matrix[2][0] = 0;
tmi.translate[0] = ((1.0f / w) * framex);
tmi.matrix[0][1] = 0;
tmi.matrix[1][1] = 1.0f / h;
tmi.matrix[2][1] = 0;
tmi.translate[1] = ((1.0f / h) * framey);
RB_CalcTransformTexCoords( &tmi, st );
}
/*
** RB_CalcSpecularAlpha
**
** Calculates specular coefficient and places it in the alpha channel
*/
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
void RB_CalcSpecularAlpha( unsigned char *alphas ) {
int i;
float *v, *normal;
vec3_t viewer, reflected;
float l, d;
int b;
vec3_t lightDir;
int numVertexes;
v = tess.xyz[0];
normal = tess.normal[0];
alphas += 3;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
float ilength;
VectorSubtract( lightOrigin, v, lightDir );
// ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) );
VectorNormalizeFast( lightDir );
// calculate the specular color
d = DotProduct (normal, lightDir);
// d *= ilength;
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
b = 0;
} else {
l = l*l;
l = l*l;
b = l * 255;
if (b > 255) {
b = 255;
}
}
*alphas = b;
}
}
// This fixed version comes from ZEQ2Lite
void RB_CalcSpecularAlphaNew( unsigned char *alphas ) {
int i;
float *v, *normal;
vec3_t viewer, reflected;
float l, d;
int b;
vec3_t lightDir;
int numVertexes;
v = tess.xyz[0];
normal = tess.normal[0];
alphas += 3;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
float ilength;
if ( backEnd.currentEntity == &tr.worldEntity )
VectorSubtract( lightOrigin, v, lightDir ); // old compatibility with maps that use it on some models
else
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
VectorNormalizeFast( lightDir );
// calculate the specular color
d = DotProduct (normal, lightDir);
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
b = 0;
} else {
l = l*l;
l = l*l;
b = l * 255;
if (b > 255) {
b = 255;
}
}
*alphas = b;
}
}
/*
** RB_CalcDiffuseColor
**
** The basic vertex lighting calc
*/
#if idppc_altivec
static void RB_CalcDiffuseColor_altivec( unsigned char *colors )
{
int i;
float *v, *normal;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t lightDir;
int numVertexes;
vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0xff);
vector float ambientLightVec;
vector float directedLightVec;
vector float lightDirVec;
vector float normalVec0, normalVec1;
vector float incomingVec0, incomingVec1, incomingVec2;
vector float zero, jVec;
vector signed int jVecInt;
vector signed short jVecShort;
vector unsigned char jVecChar, normalPerm;
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
// A lot of this could be simplified if we made sure
// entities light info was 16-byte aligned.
jVecChar = vec_lvsl(0, ent->ambientLight);
ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
jVec = vec_ld(11, (vector float *)ent->ambientLight);
ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->directedLight);
directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
jVec = vec_ld(11,(vector float *)ent->directedLight);
directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);
jVecChar = vec_lvsl(0, ent->lightDir);
lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
jVec = vec_ld(11,(vector float *)ent->lightDir);
lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);
zero = (vector float)vec_splat_s8(0);
VectorCopy( ent->lightDir, lightDir );
v = tess.xyz[0];
normal = tess.normal[0];
normalPerm = vec_lvsl(0,normal);
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
normalVec0 = vec_ld(0,(vector float *)normal);
normalVec1 = vec_ld(11,(vector float *)normal);
normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
incomingVec2 = vec_add(incomingVec0,incomingVec1);
incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
incomingVec2 = vec_add(incomingVec2,incomingVec1);
incomingVec0 = vec_splat(incomingVec2,0);
incomingVec0 = vec_max(incomingVec0,zero);
normalPerm = vec_lvsl(12,normal);
jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
jVecInt = vec_cts(jVec,0); // RGBx
jVecShort = vec_pack(jVecInt,jVecInt); // RGBxRGBx
jVecChar = vec_packsu(jVecShort,jVecShort); // RGBxRGBxRGBxRGBx
jVecChar = vec_sel(jVecChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255
vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]); // store color
}
}
#endif
static void RB_CalcDiffuseColor_scalar( unsigned char *colors )
{
int i, j;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
int numVertexes;
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
incoming = DotProduct (normal, lightDir);
if ( incoming <= 0 ) {
*(int *)&colors[i*4] = ambientLightInt;
continue;
}
j = ri.ftol(ambientLight[0] + incoming * directedLight[0]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+0] = j;
j = ri.ftol(ambientLight[1] + incoming * directedLight[1]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+1] = j;
j = ri.ftol(ambientLight[2] + incoming * directedLight[2]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+2] = j;
colors[i*4+3] = 255;
}
}
// leilei - reveal normals to GLSL for light processing. HACK HACK HACK HACK HACK HACK
void RB_CalcNormal( unsigned char *colors )
{
float *v;
float *normal = ( float * ) tess.normal;
vec3_t n, m;
int numVertexes;
v = tess.xyz[0];
//normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (int i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
int y;
float mid;
for (y=0;y<3;y++){
n[y] = normal[y];
// colors[i*4+y] = n[y];
}
//VectorNormalize(n);
mid = n[1] + n[2];
if (mid < 0) mid *= -1;
// m[0] = 127 - (n[1]*128);
// m[1] = 127 - (n[2]*128);
// m[2] = 255 - (mid*128);
m[0] = 127 + (n[0]*128);
m[1] = 127 + (n[1]*128);
m[2] = 127 + (n[2]*128);
colors[i*4+0] = m[0];
colors[i*4+1] = m[1];
colors[i*4+2] = m[2];
colors[i*4+3] = 255;
}
}
void RB_CalcDiffuseColor_Specular( unsigned char *colors )
{
int i, j;
float spec;
float *v, *normal;
float incoming;
trRefEntity_t *ent;
int ambientLightInt;
vec3_t ambientLight;
vec3_t lightDir;
vec3_t directedLight;
vec3_t specularLight;
int numVertexes;
int shadecap = 200; // was 127
ent = backEnd.currentEntity;
ambientLightInt = ent->ambientLightInt;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
VectorCopy( ent->directedLight, specularLight );
VectorAdd( ent->ambientLight, directedLight, directedLight );
VectorCopy( ent->lightDir, lightDir );
// averaging colors test
/*
{
int rf;
for (rf=0;rf<3;rf++){
//directedLight[rf] = ambientLight[rf] + directedLight[rf] / 2;
//ambientLight[rf] = pow((ambientLight[rf] / 255), (directedLight[rf] / 255)) * 255;
specularLight[rf] -= ambientLight[rf];
ambientLight[rf] = ambientLight[rf] + ambientLight[rf] + (directedLight[rf] / 512);
//shadecap += directedLight[rf];
if (specularLight[rf] < 0) specularLight[rf] = 0;
if (ambientLight[rf] > 255) ambientLight[rf] = 255;
}
//shadecap /= 3;
ambientLightInt *= 1.5;
}
*/
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
incoming = DotProduct (normal, lightDir);
if ( incoming <= 0 ) {
*(int *)&colors[i*4] = ambientLightInt;
continue;
}
// Specular
{
float ilength;
vec3_t viewer, reflected;
VectorCopy( backEnd.currentEntity->lightDir, lightDir );
VectorNormalizeFast( lightDir );
// calculate the specular color
float d = DotProduct (normal, lightDir);
// we don't optimize for the d < 0 case since this tends to
// cause visual artifacts such as faceted "snapping"
reflected[0] = normal[0]*2*d - lightDir[0];
reflected[1] = normal[1]*2*d - lightDir[1];
reflected[2] = normal[2]*2*d - lightDir[2];
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
float l = DotProduct (reflected, viewer);
l *= ilength;
if (l < 0) {
spec = 0;
} else {
l = l*l;
l = l*l;
spec = l * 2.2f;
if (spec > 1) spec = 1;
}
// specularLight[0] += spec;
// specularLight[1] += spec;
// specularLight[2] += spec;
// if (specularLight[0] < shadecap) specularLight[0] = 0;
// if (specularLight[1] < shadecap) specularLight[1] = 0;
// if (specularLight[2] < shadecap) specularLight[2] = 0;
// if (specularLight[0]) specularLight[0] = 255;
// if (specularLight[1]) specularLight[1] = 255;
// if (specularLight[2]) specularLight[2] = 255;
}
j = ri.ftol(ambientLight[0] + incoming * directedLight[0]);
if ( j > shadecap ) {
j = shadecap;
j += ri.ftol(spec * specularLight[0]);
}
// j += specularLight[0];
if ( j > 255) j = 255;
colors[i*4+0] = j;
j = ri.ftol(ambientLight[1] + incoming * directedLight[1]);
if ( j > shadecap ) {
j = shadecap;
j += ri.ftol(spec * specularLight[1]);
}
// j += specularLight[1];
if ( j > 255) j = 255;
colors[i*4+1] = j;
j = ri.ftol(ambientLight[2] + incoming * directedLight[2]);
if ( j > shadecap ) {
j = shadecap;
j += ri.ftol(spec * specularLight[2]);
}
// j += specularLight[2];
if ( j > 255) j = 255;
colors[i*4+2] = j;
colors[i*4+3] = 255;
}
}
void RB_CalcDiffuseColor( unsigned char *colors )
{
#if idppc_altivec
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
RB_CalcDiffuseColor_altivec( colors );
return;
}
#endif
// leilei - reduced it to just this, r_shadeMode deprecated. :(
RB_CalcDiffuseColor_scalar( colors );
}
/*
** RB_CalcUniformColor
**
** RiO; Uniform vertex color lighting for cel shading
*/
void RB_CalcUniformColor( unsigned char *colors )
{
int i;
trRefEntity_t *ent;
vec3_t ambientLight;
//vec3_t directedLight;
vec4_t uniformLight;
int numVertexes;
float normalize;
ent = backEnd.currentEntity;
VectorCopy( ent->ambientLight, ambientLight );
//VectorCopy( ent->directedLight, directedLight );
VectorAdd( ambientLight, ambientLight/*directedLight*/, uniformLight );
normalize = NormalizeColor( uniformLight, uniformLight );
if ( normalize > 255 ) normalize = 255;
VectorScale( uniformLight, normalize, uniformLight );
uniformLight[3] = 255;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++ ) {
colors[i*4+0] = uniformLight[0];
colors[i*4+1] = uniformLight[1];
colors[i*4+2] = uniformLight[2];
colors[i*4+3] = uniformLight[3];
}
}
/*
** RB_CalcDynamicColor
**
** MDave; Vertex color dynamic lighting for cel shading
*/
void RB_CalcDynamicColor( unsigned char *colors )
{
int i;
trRefEntity_t *ent;
vec4_t dynamic;
int numVertexes;
float normalize;
ent = backEnd.currentEntity;
VectorCopy( ent->dynamicLight, dynamic );
normalize = NormalizeColor( dynamic, dynamic );
if ( normalize > 255 ) normalize = 255;
VectorScale( dynamic, normalize, dynamic );
dynamic[3] = 255;
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++ ) {
colors[i*4+0] = dynamic[0];
colors[i*4+1] = dynamic[1];
colors[i*4+2] = dynamic[2];
colors[i*4+3] = dynamic[3];
}
}
// leilei celsperiment
void RB_CalcFlatAmbient( unsigned char *colors )
{
int i, j;
float *v, *normal;
trRefEntity_t *ent;
vec3_t ambientLight;
int numVertexes;
ent = backEnd.currentEntity;
VectorCopy( ent->ambientLight, ambientLight );
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
j = ri.ftol(ambientLight[0]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+0] = j;
j = ri.ftol(ambientLight[1]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+1] = j;
j = ri.ftol(ambientLight[2]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+2] = j;
colors[i*4+3] = 255;
}
}
void RB_CalcFlatDirect( unsigned char *colors )
{
int i, j;
float *v, *normal;
trRefEntity_t *ent;
vec3_t ambientLight;
vec3_t directedLight;
int numVertexes;
ent = backEnd.currentEntity;
VectorCopy( ent->ambientLight, ambientLight );
VectorCopy( ent->directedLight, directedLight );
directedLight[0] -= ambientLight[0];
directedLight[1] -= ambientLight[1];
directedLight[2] -= ambientLight[2];
if (directedLight[0] < 0) directedLight[0] = 0;
if (directedLight[1] < 0) directedLight[1] = 0;
if (directedLight[2] < 0) directedLight[2] = 0;
v = tess.xyz[0];
normal = tess.normal[0];
numVertexes = tess.numVertexes;
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
j = ri.ftol(directedLight[0]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+0] = j;
j = ri.ftol(directedLight[1]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+1] = j;
j = ri.ftol(directedLight[2]);
if ( j > 255 ) {
j = 255;
}
colors[i*4+2] = j;
colors[i*4+3] = 255;
}
}
//
// EYES
//
vec3_t eyemin = { -12, -12, -8 }; // clamps
vec3_t eyemax = { 12, 12, 8 }; // clamps
/*
** RB_CalcEyes
*/
void RB_CalcEyes( float *st, qboolean theothereye)
{
int i;
float *v, *normal;
vec3_t viewer, reflected, eyepos, stare;
float d;
int idk;
vec3_t stareat;
VectorCopy(backEnd.or.viewOrigin, stareat);
// transform the direction to local space
// VectorNormalize( staree );
// stareat[0] = DotProduct( staree, backEnd.currentEntity->e.axis[0] );
// stareat[1] = DotProduct( staree, backEnd.currentEntity->e.axis[1] );
// stareat[2] = DotProduct( staree, backEnd.currentEntity->e.axis[2] );
// VectorNormalize( stareat );
v = tess.xyz[0];
normal = tess.normal[0];
//VectorCopy(lightOrigin, eyepos);
//normal = backEnd.currentEntity.eyepos[0];
VectorCopy(backEnd.currentEntity->e.eyepos[0], eyepos);
if (!theothereye){
eyepos[1] *= -1;
}
VectorCopy(backEnd.currentEntity->e.eyelook, stareat);
// We need to adjust the stareat vectors to local coordinates
vec3_t temp;
VectorSubtract( stareat, backEnd.currentEntity->e.origin, temp );
stareat[0] = DotProduct( temp, backEnd.currentEntity->e.axis[0] );
stareat[1] = DotProduct( temp, backEnd.currentEntity->e.axis[1] );
stareat[2] = DotProduct( temp, backEnd.currentEntity->e.axis[2] );
// debug light positions
if (r_leidebugeye->integer == 2)
{
vec3_t temp;
vec3_t temp2;
VectorCopy(eyepos, temp);
VectorCopy(backEnd.currentEntity->e.eyelook, temp2);
// VectorCopy(backEnd.currentEntity->e.eyelook, stareat);
ri.Printf( PRINT_WARNING, "EYES %f %f %f--\nVieworigin:%f %f %f \nEye look desired:%f %f %f\n", temp[0], temp[1], temp[2], backEnd.or.viewOrigin[0], backEnd.or.viewOrigin[1], backEnd.or.viewOrigin[2], stareat[0], stareat[1], stareat[2] );
VectorNormalize(temp2);
GL_Bind( tr.whiteImage );
qglColor3f (1,1,1);
qglDepthRange( 0, 0 ); // never occluded
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglBegin (GL_LINES);
qglVertex3fv (eyepos);
qglVertex3fv (stareat);
qglEnd ();
qglDepthRange( 0, 1 );
}
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
{
// Base eye position
VectorSubtract (backEnd.or.viewOrigin, v, viewer);
//VectorSubtract (backEnd.currentEntity->e.eyepos[0], v, viewer);
VectorSubtract (eyepos, v, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
d = d * 0.01f; // only have a slight normal
//d = r_leidebug->value;
//d = 1;
// Stuff to look at
//VectorSubtract (backEnd.currentEntity->e.eyelook, v, stare);
if (r_leidebugeye->integer==1)
VectorSubtract (backEnd.or.viewOrigin, v, stare);
else if (r_leidebugeye->integer==3)
VectorSubtract (stareat, v, stare);
VectorSubtract (stareat, v, stare);
VectorNormalizeFast (stare);
// Limit the eye's turning so it doesn't have dead eyes
for (idk=0;idk<3;idk++){
stare[idk] *= 22;
if (stare[idk] > eyemax[idk]) stare[idk] = eyemax[idk];
if (stare[idk] < eyemin[idk]) stare[idk] = eyemin[idk];
stare[idk] /= 22;
}
VectorAdd(viewer, stare, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}