- r_parseStageSimple - working towards pcx2 support by loading shader stages with the texture last, to approximate blending functions by processing them into having alpha channels (or not, for opaque surfaces). Because I can. - leifx filter change - indicate number of passes to the shader, so the pixel blurring order can be tweaked to further perfection (ridding the left pixel check as that happens)
3247 lines
73 KiB
C
3247 lines
73 KiB
C
/*
|
||
===========================================================================
|
||
Copyright (C) 1999-2005 Id Software, Inc.
|
||
|
||
This file is part of Quake III Arena source code.
|
||
|
||
Quake III Arena source code is free software; you can redistribute it
|
||
and/or modify it under the terms of the GNU General Public License as
|
||
published by the Free Software Foundation; either version 2 of the License,
|
||
or (at your option) any later version.
|
||
|
||
Quake III Arena source code is distributed in the hope that it will be
|
||
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Quake III Arena source code; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
===========================================================================
|
||
*/
|
||
// tr_image.c
|
||
#include "tr_local.h"
|
||
|
||
static byte s_intensitytable[256];
|
||
static unsigned char s_gammatable[256];
|
||
|
||
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
||
int gl_filter_max = GL_LINEAR;
|
||
|
||
int force32upload; // leilei - hack to get bloom/post to always do 32bit texture
|
||
int detailhack; // leilei - hack to fade detail textures, kill repeat patterns
|
||
int palettedformat = GL_COLOR_INDEX8_EXT; // leilei - paletted texture support
|
||
|
||
|
||
#define FILE_HASH_SIZE 1024
|
||
static image_t* hashTable[FILE_HASH_SIZE];
|
||
|
||
|
||
extern int ismaptexture;
|
||
|
||
//
|
||
// leilei - paletted texture support START
|
||
//
|
||
byte *palettemain;
|
||
byte palmap[32][32][32]; // 15bpp lookup table
|
||
unsigned d_8to24table[256]; // for non-palette supporting hardware
|
||
|
||
qboolean paletteability; // If our hardware has paletted texture support...
|
||
qboolean paletteavailable; // If we got a palette...
|
||
qboolean paletteenabled; // If we wish to enable the 32-to-8 conversions (and 8-to-32 also)
|
||
|
||
//
|
||
// leilei - blending hack support
|
||
//
|
||
//
|
||
// Some cards just cannot use blending functions such as additive or subtractive.
|
||
// So to get around this, I try to turn them into alpha channels and then alpha blend them.
|
||
// Chipsets affected by this (That can run OA otherwise) are PowerVR PCX2 and Matrox Mystique / MGA-100A
|
||
//
|
||
// Furthermore, this may also be useful for a software rasterizer by turning additives into
|
||
// 1-bit alpha textures.
|
||
//
|
||
|
||
int hackoperation; // 0 - do nothing
|
||
// 1 - additive to alpha texture
|
||
// 2 - demote alpha texture if not alphaed on the edges
|
||
// 3 - subtractive to alpha texture
|
||
// 4 - modulate to alpha texture
|
||
|
||
byte BestColor (int r, int g, int b, int start, int stop)
|
||
{
|
||
int i;
|
||
int dr, dg, db;
|
||
int bestdistortion, distortion;
|
||
int berstcolor;
|
||
byte *pal;
|
||
|
||
//
|
||
// let any color go to 0 as a last resort
|
||
//
|
||
bestdistortion = 256*256*4;
|
||
berstcolor = 0;
|
||
|
||
pal = palettemain + start*3;
|
||
for (i=start ; i<= stop ; i++)
|
||
{
|
||
dr = r - (int)pal[0];
|
||
dg = g - (int)pal[1];
|
||
db = b - (int)pal[2];
|
||
pal += 3;
|
||
distortion = dr*dr + dg*dg + db*db;
|
||
if (distortion < bestdistortion)
|
||
{
|
||
if (!distortion)
|
||
return i; // perfect match
|
||
|
||
bestdistortion = distortion;
|
||
berstcolor = i;
|
||
}
|
||
}
|
||
if (berstcolor)
|
||
//ri.Printf( PRINT_ALL, "returned %i\n", berstcolor );
|
||
return berstcolor;
|
||
}
|
||
|
||
// From QUAKE2, but modified to support a transparent color
|
||
|
||
unsigned char paltable[1024];
|
||
unsigned char paltablergb[768];
|
||
|
||
void R_SetTexturePalette( unsigned palette[256])
|
||
{
|
||
int i;
|
||
|
||
|
||
{
|
||
for ( i = 0; i < 256; i++ )
|
||
{
|
||
paltable[i*4+0] = ( palette[i] >> 0 ) & 0xff;
|
||
paltable[i*4+1] = ( palette[i] >> 8 ) & 0xff;
|
||
paltable[i*4+2] = ( palette[i] >> 16 ) & 0xff;
|
||
paltable[i*4+3] = 0xFF; // all of these colors will be opaque
|
||
paltablergb[i*3+0] = ( palette[i] >> 0 ) & 0xff;
|
||
paltablergb[i*3+1] = ( palette[i] >> 8 ) & 0xff;
|
||
paltablergb[i*3+2] = ( palette[i] >> 16 ) & 0xff;
|
||
}
|
||
paltable[255*4+3] = 0x00; // EXCEPT DREADED INDEX 255!!!!
|
||
|
||
|
||
}
|
||
}
|
||
|
||
// leilei - paletted texture
|
||
extern GLvoid (APIENTRYP qglColorTableEXT)( GLint, GLint, GLint, GLint, GLint, const GLvoid *);
|
||
|
||
void R_PickTexturePalette(int alpha)
|
||
{
|
||
qglEnable(GL_SHARED_TEXTURE_PALETTE_EXT);
|
||
|
||
if (alpha)
|
||
qglColorTableEXT( GL_SHARED_TEXTURE_PALETTE_EXT, GL_RGBA, 256, GL_RGBA, GL_UNSIGNED_BYTE, paltable );
|
||
else
|
||
qglColorTableEXT( GL_SHARED_TEXTURE_PALETTE_EXT, GL_RGB, 256, GL_RGB, GL_UNSIGNED_BYTE, paltablergb );
|
||
|
||
qglEnable(GL_SHARED_TEXTURE_PALETTE_EXT);
|
||
}
|
||
|
||
unsigned r_rawpalette[256];
|
||
void R_SetPalette ( const unsigned char *palette)
|
||
{
|
||
int i;
|
||
|
||
byte *rp = ( byte * ) r_rawpalette;
|
||
|
||
if ( palette )
|
||
{
|
||
for ( i = 0; i < 256; i++ )
|
||
{
|
||
rp[i*4+0] = palette[i*3+0];
|
||
rp[i*4+1] = palette[i*3+1];
|
||
rp[i*4+2] = palette[i*3+2];
|
||
rp[i*4+3] = 0xff;
|
||
}
|
||
rp[255*4+3] = 0x00; // alpha?
|
||
}
|
||
else
|
||
{
|
||
for ( i = 0; i < 256; i++ )
|
||
{
|
||
rp[i*4+0] = d_8to24table[i] & 0xff;
|
||
rp[i*4+1] = ( d_8to24table[i] >> 8 ) & 0xff;
|
||
rp[i*4+2] = ( d_8to24table[i] >> 16 ) & 0xff;
|
||
rp[i*4+3] = 0xff;
|
||
}
|
||
rp[255*4+3] = 0x00; // alpha?
|
||
}
|
||
R_SetTexturePalette( r_rawpalette );
|
||
|
||
|
||
}
|
||
|
||
// leilei - for palettizing GLSL shaders, dump palette values to console
|
||
void R_GLSLPalette ( const unsigned char *palette)
|
||
{
|
||
int i;
|
||
|
||
float redf, greenf, bluef;
|
||
|
||
if ( palette )
|
||
{
|
||
|
||
for ( i = 0; i < 256; i++ )
|
||
{
|
||
redf = (d_8to24table[i] & 0xff) * 0.003921568627451;
|
||
greenf = (( d_8to24table[i] >> 8 ) & 0xff) * 0.003921568627451;
|
||
bluef = (( d_8to24table[i] >> 16 ) & 0xff) * 0.003921568627451;
|
||
ri.Printf( PRINT_ALL, " vec3(%f, %f, %f),\n", redf, greenf, bluef );
|
||
}
|
||
}
|
||
|
||
|
||
}
|
||
|
||
void R_GLSLPalette_f ( )
|
||
{
|
||
R_GLSLPalette(palettemain);
|
||
|
||
}
|
||
|
||
void R_InitPalette( void ) {
|
||
|
||
byte *buff;
|
||
int len;
|
||
int i, v;
|
||
ri.Printf( PRINT_ALL, "INIT PALETTE......\n");
|
||
|
||
len = ri.FS_ReadFile("gfx/palette.lmp", (void **)&buff);
|
||
if(!buff){
|
||
|
||
|
||
ri.Printf( PRINT_ALL, "PALLETE FALED :(!\n" );
|
||
paletteavailable = 0; // Don't have a palette
|
||
paletteenabled = 0; // Don't do 8-bit textures
|
||
return;
|
||
}
|
||
|
||
palettemain = buff;
|
||
ri.Printf( PRINT_ALL, "PALETTE LOADDEEEED!!!!!!!!!!!!1\n" );
|
||
paletteavailable = 1; // Do have a palette
|
||
|
||
if (palettedTextureSupport)
|
||
paletteability = 1;
|
||
else
|
||
paletteability = 0;
|
||
|
||
|
||
if (paletteability) // load this palette for GL
|
||
{
|
||
qglEnable( GL_SHARED_TEXTURE_PALETTE_EXT );
|
||
R_SetTexturePalette( palettemain );
|
||
R_SetPalette(palettemain);
|
||
|
||
}
|
||
|
||
// 15bpp lookup, straight out of Engoo
|
||
{
|
||
int r, g, b, beastcolor;
|
||
ri.Printf( PRINT_ALL, "15bpp lookup generation.\n" );
|
||
for (r=0 ; r<256 ; r+=8)
|
||
{
|
||
ri.Printf( PRINT_ALL, "." );
|
||
for (g=0 ; g<256 ; g+=8)
|
||
{
|
||
for (b=0 ; b<256 ; b+=8)
|
||
{
|
||
beastcolor = BestColor (r, g, b, 1, 254);
|
||
palmap[r>>3][g>>3][b>>3] = beastcolor;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
{
|
||
int re, ge, be;
|
||
for (i=0 ; i<256 ; i++)
|
||
{
|
||
re = palettemain[0];
|
||
ge = palettemain[1];
|
||
be = palettemain[2];
|
||
palettemain += 3;
|
||
|
||
v = (255<<24) + (re<<0) + (ge<<8) + (be<<16);
|
||
d_8to24table[i] = v;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// leilei - paletted texture support END
|
||
//
|
||
|
||
|
||
/*
|
||
** R_GammaCorrect
|
||
*/
|
||
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
||
int i;
|
||
|
||
for ( i = 0; i < bufSize; i++ ) {
|
||
buffer[i] = s_gammatable[buffer[i]];
|
||
}
|
||
}
|
||
|
||
typedef struct {
|
||
char *name;
|
||
int minimize, maximize;
|
||
} textureMode_t;
|
||
|
||
textureMode_t modes[] = {
|
||
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
||
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
||
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
||
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
||
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
||
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
||
};
|
||
|
||
/*
|
||
================
|
||
return a hash value for the filename
|
||
================
|
||
*/
|
||
static long generateHashValue( const char *fname ) {
|
||
int i;
|
||
long hash;
|
||
char letter;
|
||
|
||
hash = 0;
|
||
i = 0;
|
||
while (fname[i] != '\0') {
|
||
letter = tolower(fname[i]);
|
||
if (letter =='.') break; // don't include extension
|
||
if (letter =='\\') letter = '/'; // damn path names
|
||
hash+=(long)(letter)*(i+119);
|
||
i++;
|
||
}
|
||
hash &= (FILE_HASH_SIZE-1);
|
||
return hash;
|
||
}
|
||
|
||
/*
|
||
===============
|
||
GL_TextureMode
|
||
===============
|
||
*/
|
||
void GL_TextureMode( const char *string ) {
|
||
int i;
|
||
image_t *glt;
|
||
|
||
for ( i=0 ; i< 6 ; i++ ) {
|
||
if ( !Q_stricmp( modes[i].name, string ) ) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
// hack to prevent trilinear from being set on voodoo,
|
||
// because their driver freaks...
|
||
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D || r_leifx->integer ) {
|
||
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
|
||
i = 3;
|
||
}
|
||
|
||
|
||
if ( i == 6 ) {
|
||
ri.Printf (PRINT_ALL, "bad filter name\n");
|
||
return;
|
||
}
|
||
|
||
gl_filter_min = modes[i].minimize;
|
||
gl_filter_max = modes[i].maximize;
|
||
|
||
// change all the existing mipmap texture objects
|
||
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
||
glt = tr.images[ i ];
|
||
if ( glt->flags & IMGFLAG_MIPMAP ) {
|
||
GL_Bind (glt);
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
===============
|
||
R_SumOfUsedImages
|
||
===============
|
||
*/
|
||
int R_SumOfUsedImages( void ) {
|
||
int total;
|
||
int i;
|
||
|
||
total = 0;
|
||
for ( i = 0; i < tr.numImages; i++ ) {
|
||
if ( tr.images[i]->frameUsed == tr.frameCount ) {
|
||
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
|
||
}
|
||
}
|
||
|
||
return total;
|
||
}
|
||
|
||
|
||
/*
|
||
===============
|
||
R_ImageList_f
|
||
===============
|
||
*/
|
||
void R_ImageList_f( void ) {
|
||
int i;
|
||
int estTotalSize = 0;
|
||
float estTotalTimeLoaded = 0;
|
||
|
||
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
|
||
|
||
for ( i = 0 ; i < tr.numImages ; i++ )
|
||
{
|
||
image_t *image = tr.images[i];
|
||
char *format = "???? ";
|
||
char *sizeSuffix;
|
||
int estSize;
|
||
int displaySize;
|
||
|
||
estSize = image->uploadHeight * image->uploadWidth;
|
||
|
||
switch(image->internalFormat)
|
||
{
|
||
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
||
format = "sDXT1";
|
||
// 64 bits per 16 pixels, so 4 bits per pixel
|
||
estSize /= 2;
|
||
break;
|
||
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
||
format = "sDXT5";
|
||
// 128 bits per 16 pixels, so 1 byte per pixel
|
||
break;
|
||
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
||
format = "sBPTC";
|
||
// 128 bits per 16 pixels, so 1 byte per pixel
|
||
break;
|
||
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
|
||
format = "LATC ";
|
||
// 128 bits per 16 pixels, so 1 byte per pixel
|
||
break;
|
||
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
||
format = "DXT1 ";
|
||
// 64 bits per 16 pixels, so 4 bits per pixel
|
||
estSize /= 2;
|
||
break;
|
||
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
||
format = "DXT5 ";
|
||
// 128 bits per 16 pixels, so 1 byte per pixel
|
||
break;
|
||
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
||
format = "BPTC ";
|
||
// 128 bits per 16 pixels, so 1 byte per pixel
|
||
break;
|
||
case GL_RGB4_S3TC:
|
||
format = "S3TC ";
|
||
// same as DXT1?
|
||
estSize /= 2;
|
||
break;
|
||
case GL_RGBA4:
|
||
case GL_RGBA8:
|
||
case GL_RGBA:
|
||
format = "RGBA ";
|
||
// 4 bytes per pixel
|
||
estSize *= 4;
|
||
break;
|
||
case GL_LUMINANCE8:
|
||
case GL_LUMINANCE16:
|
||
case GL_LUMINANCE:
|
||
format = "L ";
|
||
// 1 byte per pixel?
|
||
break;
|
||
case GL_RGB5:
|
||
case GL_RGB8:
|
||
case GL_RGB:
|
||
format = "RGB ";
|
||
// 3 bytes per pixel?
|
||
estSize *= 3;
|
||
break;
|
||
case GL_LUMINANCE8_ALPHA8:
|
||
case GL_LUMINANCE16_ALPHA16:
|
||
case GL_LUMINANCE_ALPHA:
|
||
format = "LA ";
|
||
// 2 bytes per pixel?
|
||
estSize *= 2;
|
||
break;
|
||
case GL_SRGB_EXT:
|
||
case GL_SRGB8_EXT:
|
||
format = "sRGB ";
|
||
// 3 bytes per pixel?
|
||
estSize *= 3;
|
||
break;
|
||
case GL_SRGB_ALPHA_EXT:
|
||
case GL_SRGB8_ALPHA8_EXT:
|
||
format = "sRGBA";
|
||
// 4 bytes per pixel?
|
||
estSize *= 4;
|
||
break;
|
||
case GL_SLUMINANCE_EXT:
|
||
case GL_SLUMINANCE8_EXT:
|
||
format = "sL ";
|
||
// 1 byte per pixel?
|
||
break;
|
||
case GL_SLUMINANCE_ALPHA_EXT:
|
||
case GL_SLUMINANCE8_ALPHA8_EXT:
|
||
format = "sLA ";
|
||
// 2 byte per pixel?
|
||
estSize *= 2;
|
||
break;
|
||
}
|
||
|
||
// mipmap adds about 50%
|
||
if (image->flags & IMGFLAG_MIPMAP)
|
||
estSize += estSize / 2;
|
||
|
||
sizeSuffix = "b ";
|
||
displaySize = estSize;
|
||
|
||
if (displaySize > 1024)
|
||
{
|
||
displaySize /= 1024;
|
||
sizeSuffix = "kb";
|
||
}
|
||
|
||
if (displaySize > 1024)
|
||
{
|
||
displaySize /= 1024;
|
||
sizeSuffix = "Mb";
|
||
}
|
||
|
||
if (displaySize > 1024)
|
||
{
|
||
displaySize /= 1024;
|
||
sizeSuffix = "Gb";
|
||
}
|
||
|
||
//ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
|
||
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s %f %f\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName, image->loadTime, image->procTime);
|
||
|
||
estTotalSize += estSize;
|
||
estTotalTimeLoaded += image->loadTime + image->procTime;
|
||
}
|
||
|
||
ri.Printf (PRINT_ALL, " ---------\n");
|
||
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
|
||
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
||
ri.Printf (PRINT_ALL, " %f msec loaded\n\n", estTotalTimeLoaded );
|
||
}
|
||
|
||
|
||
/*
|
||
===============
|
||
R_ImageListMapOnly_f
|
||
|
||
|
||
This version is used to make life easier to see which map textures are used
|
||
and also provide a bunch of lame zip commands to modularize maps better
|
||
(i.e. packing only used stuff by the *good* maps for releases)
|
||
===============
|
||
*/
|
||
void R_ImageListMapOnly_f( void ) {
|
||
int i;
|
||
|
||
for ( i = 0 ; i < tr.numImages ; i++ )
|
||
{
|
||
image_t *image = tr.images[i];
|
||
char *zipcommand = "zip -9 ";
|
||
char localName[ MAX_QPATH ];
|
||
char *sizeSuffix;
|
||
int estSize;
|
||
int displaySize;
|
||
|
||
estSize = image->uploadHeight * image->uploadWidth;
|
||
|
||
|
||
// mipmap adds about 50%
|
||
if (image->flags & IMGFLAG_MIPMAP)
|
||
estSize += estSize / 2;
|
||
|
||
sizeSuffix = "b ";
|
||
displaySize = estSize;
|
||
|
||
//if ( !strncmp( image->imgName, "textures", 8 ) ) {
|
||
if (image->maptexture){
|
||
|
||
COM_StripExtension( image->imgName, localName, MAX_QPATH );
|
||
ri.Printf(PRINT_ALL, "%s pak1-map-mapname.pk3 %s.*\n", zipcommand, localName);
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
//=======================================================================
|
||
|
||
/*
|
||
================
|
||
ResampleTexture
|
||
|
||
Used to resample images in a more general than quartering fashion.
|
||
|
||
This will only be filtered properly if the resampled size
|
||
is greater than half the original size.
|
||
|
||
If a larger shrinking is needed, use the mipmap function
|
||
before or after.
|
||
================
|
||
*/
|
||
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
|
||
int outwidth, int outheight ) {
|
||
int i, j;
|
||
unsigned *inrow, *inrow2;
|
||
unsigned frac, fracstep;
|
||
unsigned p1[2048], p2[2048];
|
||
byte *pix1, *pix2, *pix3, *pix4;
|
||
|
||
if (outwidth>2048)
|
||
ri.Error(ERR_DROP, "ResampleTexture: max width");
|
||
|
||
fracstep = inwidth*0x10000/outwidth;
|
||
|
||
frac = fracstep>>2;
|
||
for ( i=0 ; i<outwidth ; i++ ) {
|
||
p1[i] = 4*(frac>>16);
|
||
frac += fracstep;
|
||
}
|
||
frac = 3*(fracstep>>2);
|
||
for ( i=0 ; i<outwidth ; i++ ) {
|
||
p2[i] = 4*(frac>>16);
|
||
frac += fracstep;
|
||
}
|
||
|
||
for (i=0 ; i<outheight ; i++, out += outwidth) {
|
||
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
|
||
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
|
||
for (j=0 ; j<outwidth ; j++) {
|
||
pix1 = (byte *)inrow + p1[j];
|
||
pix2 = (byte *)inrow + p2[j];
|
||
pix3 = (byte *)inrow2 + p1[j];
|
||
pix4 = (byte *)inrow2 + p2[j];
|
||
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
|
||
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
|
||
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
|
||
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//
|
||
// Darkplaces texture resampling with lerping
|
||
// from Twilight/Darkplaces, code by LordHavoc (I AM ASSUMING)
|
||
//
|
||
|
||
static void Image_Resample32LerpLine (const unsigned char *in, unsigned char *out, int inwidth, int outwidth)
|
||
{
|
||
int j, xi, oldx = 0, f, fstep, endx, lerp;
|
||
fstep = (int) (inwidth*65536.0f/outwidth);
|
||
|
||
|
||
endx = (inwidth-1);
|
||
for (j = 0,f = 0;j < outwidth;j++, f += fstep)
|
||
{
|
||
xi = f >> 16;
|
||
if (xi != oldx)
|
||
{
|
||
in += (xi - oldx) * 4;
|
||
oldx = xi;
|
||
}
|
||
if (xi < endx)
|
||
{
|
||
lerp = f & 0xFFFF;
|
||
*out++ = (unsigned char) ((((in[4] - in[0]) * lerp) >> 16) + in[0]);
|
||
*out++ = (unsigned char) ((((in[5] - in[1]) * lerp) >> 16) + in[1]);
|
||
*out++ = (unsigned char) ((((in[6] - in[2]) * lerp) >> 16) + in[2]);
|
||
*out++ = (unsigned char) ((((in[7] - in[3]) * lerp) >> 16) + in[3]);
|
||
}
|
||
else // last pixel of the line has no pixel to lerp to
|
||
{
|
||
*out++ = in[0];
|
||
*out++ = in[1];
|
||
*out++ = in[2];
|
||
*out++ = in[3];
|
||
}
|
||
}
|
||
}
|
||
|
||
#define LERPBYTE(i) r = resamplerow1[i];out[i] = (unsigned char) ((((resamplerow2[i] - r) * lerp) >> 16) + r)
|
||
static void Image_Resample32Lerp(const void *indata, int inwidth, int inheight, void *outdata, int outwidth, int outheight)
|
||
{
|
||
int i, j, r, yi, oldy, f, fstep, lerp, endy = (inheight - 1), inwidth4 = inwidth*4, outwidth4 = outwidth*4;
|
||
unsigned char *out;
|
||
const unsigned char *inrow;
|
||
unsigned char *resamplerow1;
|
||
unsigned char *resamplerow2;
|
||
out = (unsigned char *)outdata;
|
||
fstep = (int) (inheight*65536.0f/outheight);
|
||
|
||
|
||
resamplerow1 = ri.Hunk_AllocateTempMemory(outwidth*4*2);
|
||
resamplerow2 = resamplerow1 + outwidth*4;
|
||
|
||
inrow = (const unsigned char *)indata;
|
||
oldy = 0;
|
||
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
|
||
Image_Resample32LerpLine (inrow + inwidth4, resamplerow2, inwidth, outwidth);
|
||
for (i = 0, f = 0;i < outheight;i++,f += fstep)
|
||
{
|
||
yi = f >> 16;
|
||
if (yi < endy)
|
||
{
|
||
lerp = f & 0xFFFF;
|
||
if (yi != oldy)
|
||
{
|
||
inrow = (unsigned char *)indata + inwidth4*yi;
|
||
if (yi == oldy+1)
|
||
memcpy(resamplerow1, resamplerow2, outwidth4);
|
||
else
|
||
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
|
||
Image_Resample32LerpLine (inrow + inwidth4, resamplerow2, inwidth, outwidth);
|
||
oldy = yi;
|
||
}
|
||
j = outwidth - 4;
|
||
while(j >= 0)
|
||
{
|
||
LERPBYTE( 0);
|
||
LERPBYTE( 1);
|
||
LERPBYTE( 2);
|
||
LERPBYTE( 3);
|
||
LERPBYTE( 4);
|
||
LERPBYTE( 5);
|
||
LERPBYTE( 6);
|
||
LERPBYTE( 7);
|
||
LERPBYTE( 8);
|
||
LERPBYTE( 9);
|
||
LERPBYTE(10);
|
||
LERPBYTE(11);
|
||
LERPBYTE(12);
|
||
LERPBYTE(13);
|
||
LERPBYTE(14);
|
||
LERPBYTE(15);
|
||
out += 16;
|
||
resamplerow1 += 16;
|
||
resamplerow2 += 16;
|
||
j -= 4;
|
||
}
|
||
if (j & 2)
|
||
{
|
||
LERPBYTE( 0);
|
||
LERPBYTE( 1);
|
||
LERPBYTE( 2);
|
||
LERPBYTE( 3);
|
||
LERPBYTE( 4);
|
||
LERPBYTE( 5);
|
||
LERPBYTE( 6);
|
||
LERPBYTE( 7);
|
||
out += 8;
|
||
resamplerow1 += 8;
|
||
resamplerow2 += 8;
|
||
}
|
||
if (j & 1)
|
||
{
|
||
LERPBYTE( 0);
|
||
LERPBYTE( 1);
|
||
LERPBYTE( 2);
|
||
LERPBYTE( 3);
|
||
out += 4;
|
||
resamplerow1 += 4;
|
||
resamplerow2 += 4;
|
||
}
|
||
resamplerow1 -= outwidth4;
|
||
resamplerow2 -= outwidth4;
|
||
}
|
||
else
|
||
{
|
||
if (yi != oldy)
|
||
{
|
||
inrow = (unsigned char *)indata + inwidth4*yi;
|
||
if (yi == oldy+1)
|
||
memcpy(resamplerow1, resamplerow2, outwidth4);
|
||
else
|
||
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
|
||
oldy = yi;
|
||
}
|
||
memcpy(out, resamplerow1, outwidth4);
|
||
}
|
||
}
|
||
|
||
ri.Hunk_FreeTempMemory( resamplerow1 );
|
||
resamplerow1 = NULL;
|
||
resamplerow2 = NULL;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
================
|
||
R_LightScaleTexture
|
||
|
||
Scale up the pixel values in a texture to increase the
|
||
lighting range
|
||
================
|
||
*/
|
||
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
|
||
{
|
||
if ( only_gamma )
|
||
{
|
||
if ( !glConfig.deviceSupportsGamma )
|
||
{
|
||
int i, c;
|
||
byte *p;
|
||
|
||
p = (byte *)in;
|
||
|
||
c = inwidth*inheight;
|
||
for (i=0 ; i<c ; i++, p+=4)
|
||
{
|
||
p[0] = s_gammatable[p[0]];
|
||
p[1] = s_gammatable[p[1]];
|
||
p[2] = s_gammatable[p[2]];
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int i, c;
|
||
byte *p;
|
||
|
||
p = (byte *)in;
|
||
|
||
c = inwidth*inheight;
|
||
|
||
if ( glConfig.deviceSupportsGamma )
|
||
{
|
||
for (i=0 ; i<c ; i++, p+=4)
|
||
{
|
||
p[0] = s_intensitytable[p[0]];
|
||
p[1] = s_intensitytable[p[1]];
|
||
p[2] = s_intensitytable[p[2]];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i=0 ; i<c ; i++, p+=4)
|
||
{
|
||
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
||
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
||
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
================
|
||
R_MipMap2
|
||
|
||
Operates in place, quartering the size of the texture
|
||
Proper linear filter
|
||
================
|
||
*/
|
||
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
|
||
int i, j, k;
|
||
byte *outpix;
|
||
int inWidthMask, inHeightMask;
|
||
int total;
|
||
int outWidth, outHeight;
|
||
unsigned *temp;
|
||
|
||
outWidth = inWidth >> 1;
|
||
outHeight = inHeight >> 1;
|
||
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
||
|
||
inWidthMask = inWidth - 1;
|
||
inHeightMask = inHeight - 1;
|
||
|
||
for ( i = 0 ; i < outHeight ; i++ ) {
|
||
for ( j = 0 ; j < outWidth ; j++ ) {
|
||
outpix = (byte *) ( temp + i * outWidth + j );
|
||
for ( k = 0 ; k < 4 ; k++ ) {
|
||
total =
|
||
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
||
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
||
|
||
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
||
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
||
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
||
|
||
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
||
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
||
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
||
|
||
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
||
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
||
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
|
||
outpix[k] = total / 36;
|
||
}
|
||
}
|
||
}
|
||
|
||
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
||
ri.Hunk_FreeTempMemory( temp );
|
||
}
|
||
|
||
/*
|
||
================
|
||
R_MipMap
|
||
|
||
Operates in place, quartering the size of the texture
|
||
================
|
||
*/
|
||
static void R_MipMap (byte *in, int width, int height) {
|
||
int i, j;
|
||
byte *out;
|
||
int row;
|
||
|
||
if ( !r_simpleMipMaps->integer ) {
|
||
R_MipMap2( (unsigned *)in, width, height );
|
||
return;
|
||
}
|
||
|
||
if ( width == 1 && height == 1 ) {
|
||
return;
|
||
}
|
||
|
||
row = width * 4;
|
||
out = in;
|
||
width >>= 1;
|
||
height >>= 1;
|
||
|
||
if ( width == 0 || height == 0 ) {
|
||
width += height; // get largest
|
||
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
||
out[0] = ( in[0] + in[4] )>>1;
|
||
out[1] = ( in[1] + in[5] )>>1;
|
||
out[2] = ( in[2] + in[6] )>>1;
|
||
out[3] = ( in[3] + in[7] )>>1;
|
||
}
|
||
return;
|
||
}
|
||
|
||
for (i=0 ; i<height ; i++, in+=row) {
|
||
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
||
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
|
||
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
|
||
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
|
||
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//
|
||
// leilei - paletted texture support START
|
||
//
|
||
// This function came out of GLQuake
|
||
// with modifications
|
||
|
||
static void R_MipMap8 (byte *in, int width, int height)
|
||
{
|
||
int i, j;
|
||
byte *out, *at1;//, *at2, *at3, *at4;
|
||
|
||
height >>= 1;
|
||
out = in;
|
||
|
||
for (i=0 ; i<height ; i++, in+=width)
|
||
{
|
||
for (j=0 ; j<width ; j+=2, out+=1, in+=2)
|
||
{
|
||
at1 = in[0];
|
||
// at2 = in[1];
|
||
// at3 = in[width+0];
|
||
// at4 = in[width+1];
|
||
out[0] = at1;
|
||
}
|
||
}
|
||
|
||
}
|
||
//
|
||
// leilei - paletted texture support END
|
||
//
|
||
|
||
/*
|
||
==================
|
||
R_BlendOverTexture
|
||
|
||
Apply a color blend over a set of pixels
|
||
==================
|
||
*/
|
||
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
||
int i;
|
||
int inverseAlpha;
|
||
int premult[3];
|
||
|
||
inverseAlpha = 255 - blend[3];
|
||
premult[0] = blend[0] * blend[3];
|
||
premult[1] = blend[1] * blend[3];
|
||
premult[2] = blend[2] * blend[3];
|
||
|
||
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
||
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
||
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
||
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
||
}
|
||
}
|
||
|
||
byte mipBlendColors[16][4] = {
|
||
{0,0,0,0},
|
||
{255,0,0,128},
|
||
{0,255,0,128},
|
||
{0,0,255,128},
|
||
{255,0,0,128},
|
||
{0,255,0,128},
|
||
{0,0,255,128},
|
||
{255,0,0,128},
|
||
{0,255,0,128},
|
||
{0,0,255,128},
|
||
{255,0,0,128},
|
||
{0,255,0,128},
|
||
{0,0,255,128},
|
||
{255,0,0,128},
|
||
{0,255,0,128},
|
||
{0,0,255,128},
|
||
};
|
||
|
||
|
||
/*
|
||
==================
|
||
R_BlendToGray
|
||
|
||
leilei - Tries to fade mips to gray for detail texture pattern artifact stomping
|
||
==================
|
||
*/
|
||
|
||
static void R_BlendToGray( byte *data, int pixelCount, int fadeto) {
|
||
int i, j;
|
||
float gary = 127 * 0.5;
|
||
float blended;
|
||
float alphed, alpher;
|
||
|
||
if (fadeto < 1)
|
||
return; // we don't need to for the highest mip.
|
||
|
||
|
||
if (fadeto == 1){ alphed = 0.75; alpher = 0.25; }
|
||
else if (fadeto == 2){ alphed = 0.50; alpher = 0.50; }
|
||
else if (fadeto == 3){ alphed = 0.25; alpher = 0.75; }
|
||
else { alphed = 0.0; alpher = 1.00; }
|
||
|
||
//alphed = 1 / fadeto;
|
||
//alpher = 1 - alphed;
|
||
|
||
fadeto += 1;
|
||
|
||
gary /= fadeto;
|
||
|
||
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
||
for(j=0;j<3;j++){
|
||
|
||
blended = (data[j] * alphed) + (127 * alpher);
|
||
data[j] = (int)blended;
|
||
|
||
}
|
||
|
||
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
===============
|
||
Upload32
|
||
|
||
===============
|
||
*/
|
||
extern qboolean charSet;
|
||
int hqresample = 0; // leilei - high quality texture resampling
|
||
// Currently 0 as there is an alignment issue I haven't fixed.
|
||
|
||
int isicon; // leilei - for determining if it's an icon.
|
||
char dumpname[ MAX_QPATH ]; // leilei - name for texture dumping
|
||
|
||
static void DumpTex( unsigned *data,
|
||
int width, int height )
|
||
{
|
||
|
||
// leilei - Do crazy dumping crap
|
||
byte *scan;
|
||
byte *baffer, *alffer, *flipper;
|
||
scan = ((byte *)data);
|
||
size_t offset = 0;//, memcount;
|
||
int padlen = 0;
|
||
int be, ber;
|
||
int scrale = width * height;
|
||
int scravg = width + height / 2;
|
||
int quality = 85; // estimate quality from total size
|
||
int hasalf = 0;
|
||
float countw = 0;
|
||
|
||
if (scravg > 511) quality = 42; // huge textures
|
||
else if (scravg > 255) quality = 62; // large textures
|
||
else if (scravg > 127) quality = 72; // large textures
|
||
else if (scravg < 127) quality = 95; // tiny textures
|
||
baffer = ri.Hunk_AllocateTempMemory( width * height * 3 );
|
||
flipper = ri.Hunk_AllocateTempMemory( width * height * 3 );
|
||
alffer = ri.Hunk_AllocateTempMemory( width * height * 3 );
|
||
// TODO: Save alpha separately
|
||
// I'm gonna flip......
|
||
int alfcnt = 0;
|
||
|
||
|
||
|
||
for (be=0; be<scrale; be++){
|
||
int bib;
|
||
|
||
if (countw > width)
|
||
countw = 0;
|
||
else
|
||
countw++;
|
||
ber = scrale - be - 1;
|
||
bib = be;
|
||
if (bib < 0) bib = 0;
|
||
if (bib > scrale) bib = 0;
|
||
baffer[bib*3] = scan[ber*4];
|
||
baffer[bib*3+1] = scan[ber*4+1];
|
||
baffer[bib*3+2] = scan[ber*4+2];
|
||
alffer[bib*3] = scan[ber*4+3];
|
||
alffer[bib*3+1] = scan[ber*4+3];
|
||
alffer[bib*3+2] = scan[ber*4+3];
|
||
if (scan[ber*4+3] > 1){ hasalf = 1;}
|
||
if (scan[ber*4+3] == 255){ alfcnt += 1; }
|
||
}
|
||
|
||
|
||
// NOW FIX IT
|
||
|
||
|
||
|
||
|
||
//memcount = (width * 3 + padlen) * height;
|
||
if ((width > 16) && (height > 16)){
|
||
RE_SaveJPG( va("dump/%s.jpg", dumpname), 85,width, height, baffer, padlen);
|
||
if (hasalf)
|
||
RE_SaveJPG( va("dump/%s_alpha.jpg", dumpname), 85,width, height, alffer, padlen);
|
||
}
|
||
ri.Printf( PRINT_ALL, "TEXDUMP: %s \n", dumpname );
|
||
|
||
// if ( baffer != 0 )
|
||
ri.Hunk_FreeTempMemory( baffer );
|
||
// if ( alffer != 0 )
|
||
ri.Hunk_FreeTempMemory( alffer );
|
||
ri.Hunk_FreeTempMemory( flipper );
|
||
}
|
||
|
||
|
||
static void Upload32( unsigned *data,
|
||
int width, int height,
|
||
qboolean mipmap,
|
||
qboolean picmip,
|
||
qboolean lightMap,
|
||
int *format,
|
||
int *pUploadWidth, int *pUploadHeight )
|
||
{
|
||
int samples;
|
||
unsigned *scaledBuffer = NULL;
|
||
unsigned *resampledBuffer = NULL;
|
||
int scaled_width, scaled_height;
|
||
int orig_width, orig_height;
|
||
int i, c;
|
||
byte *scan;
|
||
GLenum internalFormat = GL_RGB;
|
||
GLenum temp_GLformat = GL_RGBA;
|
||
GLenum temp_GLtype = GL_UNSIGNED_BYTE;
|
||
float rMax = 0, gMax = 0, bMax = 0;
|
||
int texsizex, texsizey;
|
||
int forceBits = 0;
|
||
|
||
|
||
if (lightMap && r_parseStageSimple->integer) hackoperation = 4;
|
||
|
||
// leilei - npot support
|
||
orig_width = width;
|
||
orig_height = height;
|
||
|
||
//
|
||
// convert to exact power of 2 sizes
|
||
//
|
||
|
||
|
||
if (r_roundImagesDown->integer == 2)
|
||
{
|
||
|
||
scaled_width = width;
|
||
scaled_height = height;
|
||
|
||
//for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
|
||
// ;
|
||
//for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
|
||
// ;
|
||
|
||
if ( scaled_width != width || scaled_height != height ) {
|
||
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
||
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
|
||
data = resampledBuffer;
|
||
width = scaled_width;
|
||
height = scaled_height;
|
||
}
|
||
|
||
|
||
}
|
||
else
|
||
{
|
||
|
||
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
|
||
;
|
||
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
|
||
;
|
||
if ( (r_roundImagesDown->integer == 1) && scaled_width > width )
|
||
scaled_width >>= 1;
|
||
if ( (r_roundImagesDown->integer == 1) && scaled_height > height )
|
||
scaled_height >>= 1;
|
||
|
||
if ( scaled_width != width || scaled_height != height ) {
|
||
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
||
if (hqresample)
|
||
Image_Resample32Lerp(data, width, height, resampledBuffer, scaled_width, scaled_height - 1);
|
||
else
|
||
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
|
||
data = resampledBuffer;
|
||
width = scaled_width;
|
||
height = scaled_height;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
texsizex = glConfig.maxTextureSize;
|
||
texsizey = glConfig.maxTextureSize;
|
||
|
||
|
||
if (r_leifx->integer && !force32upload){ // leilei
|
||
texsizex = 256; // 3dfx
|
||
texsizey = 256; // 3dfx
|
||
}
|
||
|
||
|
||
//
|
||
// perform optional picmip operation
|
||
//
|
||
if ( picmip ) {
|
||
scaled_width >>= r_picmip->integer;
|
||
scaled_height >>= r_picmip->integer;
|
||
}
|
||
|
||
|
||
//
|
||
// leilei - icon picmip for certain 2d graphics elements that get wasted in lower resolutions, saving vram
|
||
//
|
||
|
||
if ( isicon ){
|
||
|
||
if (r_iconmip->integer){
|
||
|
||
|
||
// Auto-determine from resolution division
|
||
|
||
if (r_iconmip->integer == 1){
|
||
int wadth, haght, dev = 0;
|
||
|
||
wadth = floor(1280 / glConfig.vidWidth) - 1;
|
||
haght = floor(960 / glConfig.vidHeight) - 1;
|
||
if (wadth > haght) dev = wadth;
|
||
else if (haght > wadth) dev = haght;
|
||
if (dev < 0) dev = 0;
|
||
|
||
scaled_width >>= dev;
|
||
scaled_height >>= dev;
|
||
|
||
if (scaled_width < 32) scaled_width = 32;
|
||
if (scaled_height < 32) scaled_height = 32;
|
||
|
||
}
|
||
else
|
||
// Force it
|
||
{
|
||
scaled_width >>= (r_iconmip->integer - 1);
|
||
scaled_height >>= (r_iconmip->integer - 1);
|
||
if (scaled_width < 16) scaled_width = 16;
|
||
if (scaled_height < 16) scaled_height = 16;
|
||
|
||
}
|
||
|
||
|
||
}
|
||
if (r_iconBits->integer){
|
||
forceBits = r_iconBits->integer;
|
||
}
|
||
}
|
||
|
||
|
||
// leilei - lightmap color bits, for saving vram/tex cache
|
||
if (lightMap){
|
||
if (r_lightmapBits->integer){
|
||
forceBits = r_lightmapBits->integer;
|
||
force32upload = 0;
|
||
}
|
||
}
|
||
|
||
//
|
||
// clamp to minimum size
|
||
//
|
||
if (scaled_width < 1) {
|
||
scaled_width = 1;
|
||
}
|
||
if (scaled_height < 1) {
|
||
scaled_height = 1;
|
||
}
|
||
|
||
|
||
|
||
//
|
||
// clamp to the current upper OpenGL limit
|
||
// scale both axis down equally so we don't have to
|
||
// deal with a half mip resampling
|
||
//
|
||
while ( scaled_width > texsizex
|
||
|| scaled_height > texsizey ) {
|
||
scaled_width >>= 1;
|
||
scaled_height >>= 1;
|
||
}
|
||
|
||
|
||
|
||
|
||
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
||
|
||
//
|
||
// scan the texture for each channel's max values
|
||
// and verify if the alpha channel is being used or not
|
||
//
|
||
c = width*height;
|
||
scan = ((byte *)data);
|
||
samples = 3;
|
||
|
||
|
||
if (hackoperation == 1)
|
||
{
|
||
// leilei - additive to alpha
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int r, g, b;
|
||
vec3_t rgb;
|
||
float amplify;
|
||
byte alfa = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
||
//byte alfa = (scan[i*4]+ scan[i*4 + 1]+ scan[i*4 + 2]) / 3;
|
||
|
||
r = scan[i*4 + 0];
|
||
g = scan[i*4 + 1];
|
||
b = scan[i*4 + 2];
|
||
rgb[0] = r;
|
||
rgb[1] = g;
|
||
rgb[2] = b;
|
||
VectorNormalize(rgb);
|
||
r = rgb[0] * 256;
|
||
g = rgb[1] * 256;
|
||
b = rgb[2] * 256;
|
||
|
||
if (r>255) r=255;
|
||
if (g>255) g=255;
|
||
if (b>255) b=255;
|
||
|
||
if (scan[i*4 + 0] > r) r = scan[i*4 + 0];
|
||
if (scan[i*4 + 1] > g) g = scan[i*4 + 1];
|
||
if (scan[i*4 + 2] > b) b = scan[i*4 + 2];
|
||
|
||
scan[i*4 + 0] = r;
|
||
scan[i*4 + 1] = g;
|
||
scan[i*4 + 2] = b;
|
||
scan[i*4 + 3] = alfa;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
else if (hackoperation == 2)
|
||
{
|
||
// leilei - alpha killing
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
scan[i*4 + 3] = 255;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
else if(hackoperation == 3 ) // Subtractives
|
||
{
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
|
||
byte alfa = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
||
scan[i*4] = 0;
|
||
scan[i*4 + 1] = 0;
|
||
scan[i*4 + 2] = 0;
|
||
scan[i*4 + 3] = alfa;
|
||
|
||
}
|
||
}
|
||
|
||
else if (hackoperation == 4) // modulateply
|
||
{
|
||
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int r, g, b;
|
||
vec3_t rgb;
|
||
|
||
float amplify;
|
||
byte alfa = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
||
//byte alfa = (scan[i*4]+ scan[i*4 + 1]+ scan[i*4 + 2]) / 3;
|
||
alfa = sin(alfa/64) * 32;
|
||
|
||
amplify = (alfa - 128) / 255;
|
||
r = scan[i*4 + 0];
|
||
g = scan[i*4 + 1];
|
||
b = scan[i*4 + 2];
|
||
rgb[0] = r;
|
||
rgb[1] = g;
|
||
rgb[2] = b;
|
||
VectorNormalize(rgb);
|
||
r = rgb[0] * 256;
|
||
g = rgb[1] * 256;
|
||
b = rgb[2] * 256;
|
||
|
||
r *= amplify;
|
||
g *= amplify;
|
||
b *= amplify;
|
||
|
||
|
||
if (r<0) r=0;
|
||
if (g<0) g=0;
|
||
if (b<0) b=0;
|
||
|
||
if (r>255) r=255;
|
||
if (g>255) g=255;
|
||
if (b>255) b=255;
|
||
|
||
if (scan[i*4 + 0] > r) r = scan[i*4 + 0];
|
||
if (scan[i*4 + 1] > g) g = scan[i*4 + 1];
|
||
if (scan[i*4 + 2] > b) b = scan[i*4 + 2];
|
||
|
||
scan[i*4 + 0] = r;
|
||
scan[i*4 + 1] = g;
|
||
scan[i*4 + 2] = b;
|
||
scan[i*4 + 3] = alfa;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
if(r_textureDither->integer) // possibly the stupidest texture dithering ever
|
||
{
|
||
#ifdef DONTEVENTHINKABOUTTHIS
|
||
int passes = r_textureDither->integer;
|
||
int that;
|
||
/* LEIFX FILTER C PORT PROTOTYPE SCRATCH AREA
|
||
No vectors, only ints ints ints Obviously can be refactored with SSE */
|
||
#define FILTCAP (0.075 * 255)
|
||
#define FILTCAPG (FILTCAP / 2)
|
||
for (that=0;that<passes;that++){
|
||
|
||
for ( i = 0; i < c-1; i++ )
|
||
{
|
||
int ren;
|
||
int r1,g1,b1;
|
||
int r2,g2,b2;
|
||
int rd,gd,bd;
|
||
|
||
/* Grab Pixels to Sample From */
|
||
r1 = scan[i*4];
|
||
g1 = scan[i*4+1];
|
||
b1 = scan[i*4+2];
|
||
|
||
r2 = scan[(i+1)*4];
|
||
g2 = scan[(i+1)*4 + 1];
|
||
b2 = scan[(i+1)*4 + 2];
|
||
|
||
/* Find differences */
|
||
|
||
rd = r2 - r1;
|
||
gd = g2 - g1;
|
||
bd = b2 - b1;
|
||
|
||
if (rd > FILTCAP ) rd = FILTCAP;
|
||
if (gd > FILTCAPG) gd = FILTCAPG;
|
||
if (bd > FILTCAP ) bd = FILTCAP;
|
||
|
||
if (rd < -FILTCAP ) rd = -FILTCAP;
|
||
if (gd < -FILTCAPG) gd = -FILTCAPG;
|
||
if (bd < -FILTCAP ) bd = -FILTCAP;
|
||
|
||
/* Add our Differences */
|
||
|
||
r1 += (rd/3);
|
||
g1 += (gd/3);
|
||
b1 += (bd/3);
|
||
|
||
/* Obligatory clamping part */
|
||
if (r1 < 0) r1 = 0;
|
||
if (g1 < 0) g1 = 0;
|
||
if (b1 < 0) b1 = 0;
|
||
|
||
if (r1 > 255) r1 = 255;
|
||
if (g1 > 255) g1 = 255;
|
||
if (b1 > 255) b1 = 255;
|
||
|
||
if (r2 < 0) r2 = 0;
|
||
if (g2 < 0) g2 = 0;
|
||
if (b2 < 0) b2 = 0;
|
||
|
||
if (r2 > 255) r2 = 255;
|
||
if (g2 > 255) g2 = 255;
|
||
if (b2 > 255) b2 = 255;
|
||
|
||
|
||
|
||
/* Put processed image back into the buffer */
|
||
scan[i*4] = r1;
|
||
scan[i*4 + 1] = g1;
|
||
scan[i*4 + 2] = b1;
|
||
|
||
}
|
||
|
||
}
|
||
#endif
|
||
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int ren = (crandom() * 4);
|
||
int rg,gg,bb;
|
||
rg = scan[i*4];
|
||
gg = scan[i*4+1];
|
||
bb = scan[i*4+2];
|
||
|
||
//if ((rg / 64) != ceil(rg / 64))
|
||
rg = scan[i*4] + ren;
|
||
//if ((gg / 32) != ceil(gg / 32))
|
||
gg = scan[i*4 + 1] + (ren / 2);
|
||
//if ((bb / 64) != ceil(bb / 64))
|
||
bb = scan[i*4 + 2] + ren;
|
||
|
||
if (rg < 0) rg = 0;
|
||
if (gg < 0) gg = 0;
|
||
if (bb < 0) bb = 0;
|
||
|
||
if (rg > 255) rg = 255;
|
||
if (gg > 255) gg = 255;
|
||
if (bb > 255) bb = 255;
|
||
|
||
scan[i*4] = rg;
|
||
scan[i*4 + 1] = gg;
|
||
scan[i*4 + 2] = bb;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
if( r_greyscale->value )
|
||
{
|
||
// leilei - replaced with saturation processing
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
float saturated = (scan[i*4] * 0.333) + (scan[i*4 + 1] * 0.333) + (scan[i*4 + 2] * 0.333);
|
||
scan[i*4] = saturated + (scan[i*4] - saturated) * (1-r_greyscale->value);
|
||
scan[i*4 + 1] = saturated + (scan[i*4 + 1] - saturated) * (1-r_greyscale->value);
|
||
scan[i*4 + 2] = saturated + (scan[i*4 + 2] - saturated) * (1-r_greyscale->value);
|
||
|
||
if (scan[i*4] > 255) scan[i*4] = 255;
|
||
if (scan[i*4 + 1] > 255) scan[i*4 + 1] = 255;
|
||
if (scan[i*4 + 2] > 255) scan[i*4 + 2] = 255;
|
||
}
|
||
}
|
||
|
||
if(lightMap)
|
||
{
|
||
if( r_monolightmaps->value )
|
||
{
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
float saturated = (scan[i*4] * 0.333) + (scan[i*4 + 1] * 0.333) + (scan[i*4 + 2] * 0.333);
|
||
scan[i*4] = saturated + (scan[i*4] - saturated) * (1-r_monolightmaps->value);
|
||
scan[i*4 + 1] = saturated + (scan[i*4 + 1] - saturated) * (1-r_monolightmaps->value );
|
||
scan[i*4 + 2] = saturated + (scan[i*4 + 2] - saturated) * (1-r_monolightmaps->value );
|
||
|
||
if (scan[i*4] > 255) scan[i*4] = 255;
|
||
if (scan[i*4 + 1] > 255) scan[i*4 + 1] = 255;
|
||
if (scan[i*4 + 2] > 255) scan[i*4 + 2] = 255;
|
||
}
|
||
}
|
||
|
||
if(r_greyscale->integer)
|
||
internalFormat = GL_LUMINANCE;
|
||
else if(r_monolightmaps->integer)
|
||
internalFormat = GL_LUMINANCE;
|
||
else
|
||
internalFormat = GL_RGB;
|
||
|
||
// leilei - lightmap color bits, for saving vram/tex cache
|
||
if (r_lightmapBits->integer){
|
||
forceBits = r_lightmapBits->integer;
|
||
force32upload = 0;
|
||
|
||
if ( forceBits == 16)
|
||
{
|
||
internalFormat = GL_RGB5;
|
||
}
|
||
else if ( forceBits == 15)
|
||
{
|
||
internalFormat = GL_RGB5;
|
||
}
|
||
else if ( forceBits == 12)
|
||
{
|
||
internalFormat = GL_RGB4;
|
||
}
|
||
else if ( forceBits == 6)
|
||
{
|
||
internalFormat = GL_R3_G3_B2;
|
||
}
|
||
else if ( forceBits == 32)
|
||
{
|
||
internalFormat = GL_RGB8;
|
||
}
|
||
else
|
||
{
|
||
internalFormat = GL_RGB;
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
if ( scan[i*4+0] > rMax )
|
||
{
|
||
rMax = scan[i*4+0];
|
||
}
|
||
if ( scan[i*4+1] > gMax )
|
||
{
|
||
gMax = scan[i*4+1];
|
||
}
|
||
if ( scan[i*4+2] > bMax )
|
||
{
|
||
bMax = scan[i*4+2];
|
||
}
|
||
if ( scan[i*4 + 3] != 255 )
|
||
{
|
||
samples = 4;
|
||
break;
|
||
}
|
||
}
|
||
// select proper internal format
|
||
if ( samples == 3 )
|
||
{
|
||
if(r_greyscale->integer)
|
||
{
|
||
if(r_texturebits->integer == 16 || forceBits == 16)
|
||
internalFormat = GL_LUMINANCE8;
|
||
else if(r_texturebits->integer == 32 || forceBits == 32)
|
||
internalFormat = GL_LUMINANCE16;
|
||
else
|
||
internalFormat = GL_LUMINANCE;
|
||
}
|
||
else
|
||
{
|
||
if ( glConfig.textureCompression == TC_S3TC_ARB )
|
||
{
|
||
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
||
}
|
||
else if ( glConfig.textureCompression == TC_S3TC )
|
||
{
|
||
internalFormat = GL_RGB4_S3TC;
|
||
}
|
||
else if ( r_texturebits->integer == 16 || forceBits == 16)
|
||
{
|
||
internalFormat = GL_RGB5;
|
||
}
|
||
else if ( r_texturebits->integer == 15 || forceBits == 15)
|
||
{
|
||
internalFormat = GL_RGB5;
|
||
}
|
||
else if ( r_texturebits->integer == 12 || forceBits == 12)
|
||
{
|
||
internalFormat = GL_RGB4;
|
||
}
|
||
else if ( r_texturebits->integer == 6 || forceBits == 6)
|
||
{
|
||
internalFormat = GL_R3_G3_B2;
|
||
}
|
||
else if ( r_texturebits->integer == 32 || forceBits == 32)
|
||
{
|
||
internalFormat = GL_RGB8;
|
||
}
|
||
else
|
||
{
|
||
internalFormat = GL_RGB;
|
||
}
|
||
if (detailhack) internalFormat = GL_LUMINANCE; // leilei - use paletted mono format for detail textures
|
||
if (force32upload) internalFormat = GL_RGB8; // leilei - gets bloom and postproc working on s3tc & 8bit & palettes
|
||
if ((r_leifx->integer) && (!force32upload)) internalFormat = GL_RGB5;
|
||
}
|
||
}
|
||
else if ( samples == 4 )
|
||
{
|
||
if(r_greyscale->integer)
|
||
{
|
||
if(r_texturebits->integer == 16 || forceBits == 16)
|
||
internalFormat = GL_LUMINANCE8_ALPHA8;
|
||
else if(r_texturebits->integer == 32 || forceBits == 32)
|
||
internalFormat = GL_LUMINANCE16_ALPHA16;
|
||
else
|
||
internalFormat = GL_LUMINANCE_ALPHA;
|
||
}
|
||
else
|
||
{
|
||
if ( glConfig.textureCompression == TC_S3TC_ARB )
|
||
{
|
||
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; // leilei - this was missing
|
||
}
|
||
else
|
||
if ( r_texturebits->integer == 16 || forceBits == 16)
|
||
{
|
||
internalFormat = GL_RGBA4;
|
||
}
|
||
else if ( r_texturebits->integer == 15 || forceBits == 15)
|
||
{
|
||
internalFormat = GL_RGB5_A1;
|
||
}
|
||
else if ( r_texturebits->integer == 12 || forceBits == 12)
|
||
{
|
||
internalFormat = GL_RGBA4;
|
||
}
|
||
else if ( r_texturebits->integer == 6 || forceBits == 6)
|
||
{
|
||
internalFormat = GL_RGBA2;
|
||
}
|
||
else if ( r_texturebits->integer == 32 || forceBits == 32)
|
||
{
|
||
internalFormat = GL_RGBA8;
|
||
}
|
||
else
|
||
{
|
||
internalFormat = GL_RGBA;
|
||
}
|
||
if (force32upload) internalFormat = GL_RGBA8; // leilei - gets bloom and postproc working on s3tc & 8bit & palettes
|
||
if ((r_leifx->integer) && (!force32upload)) internalFormat = GL_RGBA4;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (depthimage)
|
||
{ mipmap=0; internalFormat = GL_DEPTH_COMPONENT; temp_GLformat=GL_DEPTH_COMPONENT; temp_GLtype=GL_FLOAT; }
|
||
else
|
||
{ temp_GLformat=GL_RGBA; temp_GLtype=GL_UNSIGNED_BYTE; }
|
||
|
||
|
||
|
||
// copy or resample data as appropriate for first MIP level
|
||
if ( ( scaled_width == width ) &&
|
||
( scaled_height == height ) ) {
|
||
if (!mipmap)
|
||
{
|
||
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, data);
|
||
*pUploadWidth = scaled_width;
|
||
*pUploadHeight = scaled_height;
|
||
*format = internalFormat;
|
||
|
||
goto done;
|
||
}
|
||
|
||
|
||
|
||
|
||
Com_Memcpy (scaledBuffer, data, width*height*4);
|
||
}
|
||
else
|
||
{
|
||
// use the normal mip-mapping function to go down from here
|
||
while ( width > scaled_width || height > scaled_height ) {
|
||
R_MipMap( (byte *)data, width, height );
|
||
width >>= 1;
|
||
height >>= 1;
|
||
if ( width < 1 ) {
|
||
width = 1;
|
||
}
|
||
if ( height < 1 ) {
|
||
height = 1;
|
||
}
|
||
}
|
||
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
||
}
|
||
|
||
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap );
|
||
|
||
*pUploadWidth = scaled_width;
|
||
*pUploadHeight = scaled_height;
|
||
*format = internalFormat;
|
||
|
||
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, scaledBuffer );
|
||
|
||
|
||
|
||
if (mipmap)
|
||
{
|
||
int miplevel;
|
||
|
||
miplevel = 0;
|
||
while (scaled_width > 1 || scaled_height > 1)
|
||
{
|
||
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
|
||
scaled_width >>= 1;
|
||
scaled_height >>= 1;
|
||
if (scaled_width < 1)
|
||
scaled_width = 1;
|
||
if (scaled_height < 1)
|
||
scaled_height = 1;
|
||
miplevel++;
|
||
|
||
if ( r_colorMipLevels->integer ) {
|
||
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
|
||
}
|
||
|
||
if (detailhack) // leilei - blend detail textures to gray to defeat pattern effects in distances
|
||
{
|
||
R_BlendToGray( (byte *)scaledBuffer, scaled_width * scaled_height, miplevel );
|
||
}
|
||
|
||
|
||
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, scaledBuffer );
|
||
}
|
||
}
|
||
done:
|
||
|
||
|
||
|
||
if (mipmap)
|
||
{
|
||
if ( textureFilterAnisotropic )
|
||
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
||
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
||
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
||
}
|
||
else
|
||
{
|
||
if ( textureFilterAnisotropic )
|
||
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
||
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
||
}
|
||
|
||
if (depthimage) {
|
||
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
|
||
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
|
||
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
||
glTexParameteri (GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_ALPHA);
|
||
}
|
||
if (softwaremode) { // leilei - software speedup
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
|
||
}
|
||
GL_CheckErrors();
|
||
|
||
if ( scaledBuffer != 0 )
|
||
ri.Hunk_FreeTempMemory( scaledBuffer );
|
||
if ( resampledBuffer != 0 )
|
||
ri.Hunk_FreeTempMemory( resampledBuffer );
|
||
}
|
||
|
||
//
|
||
// leilei - paletted texture support START
|
||
//
|
||
static void Upload8( unsigned *data,
|
||
int width, int height,
|
||
qboolean mipmap,
|
||
qboolean picmip,
|
||
qboolean lightMap,
|
||
int *format,
|
||
int *pUploadWidth, int *pUploadHeight )
|
||
{
|
||
int samples;
|
||
unsigned *scaledBuffer = NULL;
|
||
unsigned *resampledBuffer = NULL;
|
||
unsigned char *palettedBuffer = NULL;
|
||
int scaled_width, scaled_height;
|
||
int i, c;
|
||
byte *scan;
|
||
GLenum internalFormat = GL_RGB;
|
||
GLenum temp_GLformat = GL_RGBA;
|
||
GLenum temp_GLtype = GL_UNSIGNED_BYTE;
|
||
int texsizex, texsizey; // leilei
|
||
int superfactor = 1;
|
||
int isalphaedrgba = 0; // for cards that SCUK at it
|
||
//unsigned char *data8;
|
||
|
||
//
|
||
// convert to exact power of 2 sizes
|
||
//
|
||
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
|
||
;
|
||
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
|
||
;
|
||
if ( r_roundImagesDown->integer && scaled_width > width )
|
||
scaled_width >>= 1;
|
||
if ( r_roundImagesDown->integer && scaled_height > height )
|
||
scaled_height >>= 1;
|
||
|
||
scaled_width *= superfactor;
|
||
scaled_height *= superfactor;
|
||
|
||
if ( scaled_width != width || scaled_height != height ) {
|
||
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
||
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
|
||
data = resampledBuffer;
|
||
width = scaled_width;
|
||
height = scaled_height;
|
||
}
|
||
|
||
//
|
||
// perform optional picmip operation
|
||
//
|
||
if ( picmip ) {
|
||
scaled_width >>= r_picmip->integer;
|
||
scaled_height >>= r_picmip->integer;
|
||
}
|
||
|
||
//
|
||
// clamp to minimum size
|
||
//
|
||
if (scaled_width < 1) {
|
||
scaled_width = 1;
|
||
}
|
||
if (scaled_height < 1) {
|
||
scaled_height = 1;
|
||
}
|
||
|
||
|
||
|
||
//
|
||
// clamp to the current upper OpenGL limit
|
||
// scale both axis down equally so we don't have to
|
||
// deal with a half mip resampling
|
||
//
|
||
|
||
texsizex = glConfig.maxTextureSize;
|
||
texsizey = glConfig.maxTextureSize;
|
||
|
||
|
||
if ((r_leifx->integer) && (!force32upload)){ // leilei
|
||
texsizex = 256; // 3dfx
|
||
texsizey = 256; // 3dfx
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
|
||
while ( scaled_width > texsizex
|
||
|| scaled_height > texsizey ) {
|
||
scaled_width >>= 1;
|
||
scaled_height >>= 1;
|
||
}
|
||
|
||
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
||
|
||
//
|
||
// scan the texture for each channel's max values
|
||
// and verify if the alpha channel is being used or not
|
||
//
|
||
c = width*height;
|
||
scan = ((byte *)data);
|
||
samples = 3;
|
||
// LEILEI - paletted texturing hack
|
||
// Check for an alpha
|
||
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int a;
|
||
a = scan[i*4 +3];
|
||
a *= 1.9;
|
||
a /= 255;
|
||
a *= 255;
|
||
}
|
||
|
||
if (paletteability)
|
||
R_PickTexturePalette(1);
|
||
|
||
if (paletteability && !isalphaedrgba) // Preparing for native upload
|
||
{
|
||
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int thecol;
|
||
int r, g, b, a;
|
||
r = scan[i*4];
|
||
g = scan[i*4 +1];
|
||
b = scan[i*4 +2];
|
||
a = scan[i*4 +3];
|
||
thecol = palmap[r>>3][g>>3][b>>3];
|
||
a *= 1.9;
|
||
a /= 255;
|
||
a *= 255;
|
||
if (!a){
|
||
thecol = 255; // transparent color
|
||
}
|
||
scan[i] = thecol;
|
||
}
|
||
|
||
}
|
||
else // Preparing for simulated RGBA upload
|
||
{
|
||
for ( i = 0; i < c; i++ )
|
||
{
|
||
int thecol;
|
||
int r, g, b, a;
|
||
unsigned char *pix24;
|
||
r = scan[i*4];
|
||
g = scan[i*4 +1];
|
||
b = scan[i*4 +2];
|
||
a = scan[i*4 +3];
|
||
thecol = palmap[r>>3][g>>3][b>>3];
|
||
|
||
|
||
a *= 1.9;
|
||
a /= 255;
|
||
a *= 255;
|
||
|
||
pix24 = (unsigned char *)&d_8to24table[thecol];
|
||
if (!a){
|
||
thecol = 255; // transparent color
|
||
samples = 4;
|
||
}
|
||
scan[i*4] = pix24[0];
|
||
scan[i*4+1] = pix24[1];
|
||
scan[i*4+2] = pix24[2];
|
||
scan[i*4+3] = a;
|
||
|
||
|
||
}
|
||
}
|
||
|
||
|
||
|
||
{
|
||
|
||
// select proper internal format
|
||
if ( samples == 3 )
|
||
{
|
||
internalFormat = GL_RGB;
|
||
}
|
||
else if ( samples == 4 )
|
||
{
|
||
internalFormat = GL_RGBA;
|
||
}
|
||
}
|
||
|
||
// copy or resample data as appropriate for first MIP level
|
||
|
||
|
||
|
||
|
||
if ( ( scaled_width == width ) &&
|
||
( scaled_height == height ) ) {
|
||
if (!mipmap)
|
||
{
|
||
if (paletteability && !isalphaedrgba)
|
||
qglTexImage2D( GL_TEXTURE_2D, 0, palettedformat, scaled_width, scaled_height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, data);
|
||
else
|
||
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, data);
|
||
*pUploadWidth = scaled_width;
|
||
*pUploadHeight = scaled_height;
|
||
*format = internalFormat;
|
||
|
||
goto done;
|
||
}
|
||
if (!paletteability || isalphaedrgba)
|
||
Com_Memcpy (scaledBuffer, data, width*height*4);
|
||
else Com_Memcpy (scaledBuffer, data, width*height);
|
||
|
||
}
|
||
else
|
||
{
|
||
// use the normal mip-mapping function to go down from here
|
||
while ( width > scaled_width || height > scaled_height ) {
|
||
if (paletteability && !isalphaedrgba)
|
||
R_MipMap8( (byte *)data, width, height );
|
||
else
|
||
R_MipMap( (byte *)data, width, height );
|
||
width >>= 1;
|
||
height >>= 1;
|
||
if ( width < 1 ) {
|
||
width = 1;
|
||
}
|
||
if ( height < 1 ) {
|
||
height = 1;
|
||
}
|
||
}
|
||
if (!paletteability || isalphaedrgba)
|
||
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
||
else Com_Memcpy( scaledBuffer, data, width * height);
|
||
}
|
||
|
||
|
||
*pUploadWidth = scaled_width;
|
||
*pUploadHeight = scaled_height;
|
||
*format = internalFormat;
|
||
|
||
|
||
if (paletteability && !isalphaedrgba)
|
||
qglTexImage2D( GL_TEXTURE_2D, 0, palettedformat, scaled_width, scaled_height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, scaledBuffer );
|
||
else
|
||
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, scaledBuffer );
|
||
|
||
if (mipmap)
|
||
{
|
||
int miplevel;
|
||
|
||
miplevel = 0;
|
||
while (scaled_width > 1 || scaled_height > 1)
|
||
{
|
||
if (paletteability && !isalphaedrgba)
|
||
R_MipMap8( (byte *)scaledBuffer, scaled_width, scaled_height );
|
||
else
|
||
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
|
||
|
||
scaled_width >>= 1;
|
||
scaled_height >>= 1;
|
||
if (scaled_width < 1)
|
||
scaled_width = 1;
|
||
if (scaled_height < 1)
|
||
scaled_height = 1;
|
||
miplevel++;
|
||
|
||
|
||
if (paletteability && !isalphaedrgba)
|
||
qglTexImage2D( GL_TEXTURE_2D, miplevel, palettedformat, scaled_width, scaled_height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, scaledBuffer );
|
||
else
|
||
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, temp_GLformat, temp_GLtype, scaledBuffer );
|
||
|
||
}
|
||
}
|
||
done:
|
||
|
||
if (mipmap)
|
||
{
|
||
if ( textureFilterAnisotropic )
|
||
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
||
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
||
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
||
}
|
||
else
|
||
{
|
||
if ( textureFilterAnisotropic )
|
||
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
||
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
||
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
||
}
|
||
|
||
if (softwaremode) { // leilei - software speedup
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
|
||
}
|
||
|
||
GL_CheckErrors();
|
||
|
||
if ( scaledBuffer != 0 )
|
||
ri.Hunk_FreeTempMemory( scaledBuffer );
|
||
if ( resampledBuffer != 0 )
|
||
ri.Hunk_FreeTempMemory( resampledBuffer );
|
||
if ( palettedBuffer != 0 )
|
||
ri.Hunk_FreeTempMemory( palettedBuffer );
|
||
}
|
||
|
||
//
|
||
// leilei - paletted texture support END
|
||
//
|
||
/*
|
||
================
|
||
R_CreateImage
|
||
|
||
This is the only way any image_t are created
|
||
================
|
||
*/
|
||
image_t *R_CreateImage( const char *name, byte *pic, int width, int height,
|
||
imgType_t type, imgFlags_t flags, int internalFormat ) {
|
||
image_t *image;
|
||
qboolean isLightmap = qfalse;
|
||
long hash;
|
||
int glWrapClampMode;
|
||
float oldtime = backEnd.refdef.floatTime;
|
||
if (strlen(name) >= MAX_QPATH ) {
|
||
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
|
||
}
|
||
if ( !strncmp( name, "*lightmap", 9 ) ) {
|
||
isLightmap = qtrue;
|
||
}
|
||
|
||
if ( tr.numImages == MAX_DRAWIMAGES ) {
|
||
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
|
||
}
|
||
|
||
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
|
||
image->texnum = 1024 + tr.numImages;
|
||
tr.numImages++;
|
||
|
||
image->type = type;
|
||
image->flags = flags;
|
||
|
||
strcpy (image->imgName, name);
|
||
|
||
image->width = width;
|
||
image->height = height;
|
||
if (flags & IMGFLAG_CLAMPTOEDGE)
|
||
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
||
else
|
||
glWrapClampMode = GL_REPEAT;
|
||
|
||
// lightmaps are always allocated on TMU 1
|
||
if ( qglActiveTextureARB && isLightmap ) {
|
||
image->TMU = 1;
|
||
} else {
|
||
image->TMU = 0;
|
||
}
|
||
|
||
if ( qglActiveTextureARB ) {
|
||
GL_SelectTexture( image->TMU );
|
||
}
|
||
|
||
GL_Bind(image);
|
||
|
||
// leilei - texture dumping
|
||
if (r_texdump->integer){
|
||
COM_StripExtension( name, dumpname, MAX_QPATH ); // leilei - transfer name for texdump
|
||
DumpTex( (unsigned *)pic, image->width, image->height);
|
||
}
|
||
|
||
if (paletteavailable && r_texturebits->integer == 8 && !isLightmap && !depthimage && !force32upload)
|
||
Upload8( (unsigned *)pic, image->width, image->height,
|
||
image->flags & IMGFLAG_MIPMAP,
|
||
image->flags & IMGFLAG_PICMIP,
|
||
isLightmap,
|
||
&image->internalFormat,
|
||
&image->uploadWidth,
|
||
&image->uploadHeight );
|
||
|
||
else
|
||
Upload32( (unsigned *)pic, image->width, image->height,
|
||
image->flags & IMGFLAG_MIPMAP,
|
||
image->flags & IMGFLAG_PICMIP,
|
||
isLightmap,
|
||
&image->internalFormat,
|
||
&image->uploadWidth,
|
||
&image->uploadHeight );
|
||
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
|
||
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
|
||
|
||
// FIXME: this stops fog from setting border color?
|
||
glState.currenttextures[glState.currenttmu] = 0;
|
||
qglBindTexture( GL_TEXTURE_2D, 0 );
|
||
|
||
if ( image->TMU == 1 ) {
|
||
GL_SelectTexture( 0 );
|
||
}
|
||
|
||
// leilei - map texture listing hack
|
||
|
||
image->maptexture = ismaptexture;
|
||
|
||
hash = generateHashValue(name);
|
||
image->next = hashTable[hash];
|
||
hashTable[hash] = image;
|
||
|
||
image->procTime = backEnd.refdef.floatTime - oldtime;
|
||
return image;
|
||
}
|
||
|
||
//===================================================================
|
||
|
||
typedef struct
|
||
{
|
||
char *ext;
|
||
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
|
||
} imageExtToLoaderMap_t;
|
||
|
||
// Note that the ordering indicates the order of preference used
|
||
// when there are multiple images of different formats available
|
||
static imageExtToLoaderMap_t imageLoaders[ ] =
|
||
{
|
||
{ "tga", R_LoadTGA },
|
||
{ "jpg", R_LoadJPG },
|
||
{ "jpeg", R_LoadJPG },
|
||
{ "png", R_LoadPNG },
|
||
{ "pcx", R_LoadPCX },
|
||
{ "bmp", R_LoadBMP }
|
||
};
|
||
|
||
static int numImageLoaders = ARRAY_LEN( imageLoaders );
|
||
|
||
/*
|
||
=================
|
||
R_LoadImage
|
||
|
||
Loads any of the supported image types into a cannonical
|
||
32 bit format.
|
||
=================
|
||
*/
|
||
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
|
||
{
|
||
qboolean orgNameFailed = qfalse;
|
||
int orgLoader = -1;
|
||
int i;
|
||
char localName[ MAX_QPATH ];
|
||
const char *ext;
|
||
char *altName;
|
||
|
||
*pic = NULL;
|
||
*width = 0;
|
||
*height = 0;
|
||
|
||
Q_strncpyz( localName, name, MAX_QPATH );
|
||
|
||
ext = COM_GetExtension( localName );
|
||
|
||
|
||
|
||
if( *ext )
|
||
{
|
||
// Look for the correct loader and use it
|
||
for( i = 0; i < numImageLoaders; i++ )
|
||
{
|
||
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
|
||
{
|
||
// Load
|
||
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
|
||
break;
|
||
}
|
||
}
|
||
|
||
// A loader was found
|
||
if( i < numImageLoaders )
|
||
{
|
||
if( *pic == NULL )
|
||
{
|
||
// Loader failed, most likely because the file isn't there;
|
||
// try again without the extension
|
||
orgNameFailed = qtrue;
|
||
orgLoader = i;
|
||
COM_StripExtension( name, localName, MAX_QPATH );
|
||
}
|
||
else
|
||
{
|
||
// Something loaded
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Try and find a suitable match using all
|
||
// the image formats supported
|
||
for( i = 0; i < numImageLoaders; i++ )
|
||
{
|
||
if (i == orgLoader)
|
||
continue;
|
||
|
||
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
|
||
|
||
// Load
|
||
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
|
||
|
||
if( *pic )
|
||
{
|
||
if( orgNameFailed )
|
||
{
|
||
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
|
||
name, altName );
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
===============
|
||
R_FindImageFile
|
||
|
||
Finds or loads the given image.
|
||
Returns NULL if it fails, not a default image.
|
||
==============
|
||
*/
|
||
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
|
||
{
|
||
image_t *image;
|
||
int width, height;
|
||
int dontgotsafe;
|
||
byte *pic;
|
||
long hash;
|
||
float oldtime;
|
||
float loadtime;
|
||
float proctime;
|
||
|
||
if (!name) {
|
||
return NULL;
|
||
}
|
||
|
||
detailhack = 0;
|
||
hash = generateHashValue(name);
|
||
|
||
//
|
||
// see if the image is already loaded
|
||
//
|
||
for (image=hashTable[hash]; image; image=image->next) {
|
||
if ( !strcmp( name, image->imgName ) ) {
|
||
// the white image can be used with any set of parms, but other mismatches are errors
|
||
if ( strcmp( name, "*white" ) ) {
|
||
if ( image->flags != flags ) {
|
||
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
|
||
}
|
||
}
|
||
return image;
|
||
}
|
||
}
|
||
|
||
// leilei - Detail texture hack
|
||
// to kill artifacts of shimmer of pattern of terrible
|
||
if ( !Q_strncmp( name, "textures/detail/", 16 ) || !Q_strncmp( name, "gfx/fx/detail/", 14 )) {
|
||
ri.Printf( PRINT_DEVELOPER, "DETAILHACK: %s - mips will be gray\n", name );
|
||
detailhack = 1; // leilei - attempt to fade detail mips to gray, EXPECTS DST_COLOR/SRC_COLOR for this to work right
|
||
}
|
||
|
||
// leilei - iconmip hack
|
||
|
||
if ( !Q_strncmp( name, "icons/", 5 ) || ((!Q_strncmp( name, "gfx/2d", 6 )) && (Q_strncmp( name, "gfx/2d/bigchars", 14 )))){
|
||
isicon = 1;
|
||
}
|
||
else
|
||
isicon = 0;
|
||
|
||
//
|
||
// load the pic from disk
|
||
//
|
||
|
||
oldtime = ri.Milliseconds() * 100;
|
||
dontgotsafe = 0;
|
||
if (r_suggestiveThemes->integer == 1) dontgotsafe = 1;
|
||
|
||
|
||
// leilei - load safe or lewd textures if desired.
|
||
if (!Q_strncmp( name, "models/player", 13) ){
|
||
|
||
|
||
|
||
if (r_suggestiveThemes->integer < 1){
|
||
char narm[ MAX_QPATH ];
|
||
COM_StripExtension( name, narm, MAX_QPATH );
|
||
R_LoadImage( va("%s_safe", narm), &pic, &width, &height );
|
||
if ( pic == NULL )
|
||
dontgotsafe = 1;
|
||
else
|
||
dontgotsafe = 0;
|
||
|
||
}
|
||
|
||
else if (r_suggestiveThemes->integer > 1){
|
||
char narm[ MAX_QPATH ];
|
||
COM_StripExtension( name, narm, MAX_QPATH );
|
||
R_LoadImage( va("%s_lewd", narm), &pic, &width, &height );
|
||
if ( pic == NULL )
|
||
dontgotsafe = 1;
|
||
else
|
||
dontgotsafe = 0;
|
||
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
dontgotsafe = 1;
|
||
}
|
||
|
||
//oldtime = backEnd.refdef.floatTime;
|
||
|
||
|
||
if (dontgotsafe){
|
||
R_LoadImage( name, &pic, &width, &height );
|
||
if ( pic == NULL ) {
|
||
return NULL;
|
||
}
|
||
}
|
||
loadtime = (ri.Milliseconds() * 100) - oldtime;
|
||
// loadtime = backEnd.refdef.floatTime - oldtime;
|
||
|
||
|
||
// leilei - if we need to change the texture upload with a special image prefix to separate from differently blended things
|
||
if (hackoperation)
|
||
{
|
||
char hackName[MAX_QPATH];
|
||
char *hackedName;
|
||
COM_StripExtension( name, hackName, MAX_QPATH );
|
||
if(hackoperation==1) hackedName = va("%shackadd", hackName);
|
||
if(hackoperation==2) hackedName = va("%shacknob", hackName);
|
||
if(hackoperation==3) hackedName = va("%shacksub", hackName);
|
||
if(hackoperation==4) hackedName = va("%shackmod", hackName);
|
||
else hackedName = va("%shackblend", hackName);
|
||
image = R_CreateImage( ( char * ) hackedName, pic, width, height, type, flags, 0 );
|
||
}
|
||
|
||
else
|
||
|
||
{
|
||
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
|
||
}
|
||
|
||
|
||
ri.Free( pic );
|
||
|
||
|
||
image->loadTime = loadtime;
|
||
|
||
return image;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
===============
|
||
R_FindImageFileIfItsThere
|
||
|
||
leilei
|
||
Finds the given image and does not load it.
|
||
==============
|
||
*/
|
||
image_t *R_FindImageFileIfItsThere( const char *name, imgType_t type, imgFlags_t flags )
|
||
{
|
||
image_t *image;
|
||
int width, height;
|
||
byte *pic;
|
||
long hash;
|
||
|
||
if (!name) {
|
||
return NULL;
|
||
}
|
||
|
||
detailhack = 0;
|
||
hash = generateHashValue(name);
|
||
|
||
//
|
||
// see if the image is already loaded
|
||
//
|
||
for (image=hashTable[hash]; image; image=image->next) {
|
||
if ( !strcmp( name, image->imgName ) ) {
|
||
// the white image can be used with any set of parms, but other mismatches are errors
|
||
if ( strcmp( name, "*white" ) ) {
|
||
if ( image->flags != flags ) {
|
||
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
|
||
}
|
||
}
|
||
return image;
|
||
}
|
||
}
|
||
|
||
// leilei - Detail texture hack
|
||
// to kill artifacts of shimmer of pattern of terrible
|
||
if ( !Q_strncmp( name, "textures/detail/", 16 ) || !Q_strncmp( name, "gfx/fx/detail/", 14 )) {
|
||
ri.Printf( PRINT_DEVELOPER, "DETAILHACK: %s - mips will be gray\n", name );
|
||
detailhack = 1; // leilei - attempt to fade detail mips to gray, EXPECTS DST_COLOR/SRC_COLOR for this to work right
|
||
}
|
||
|
||
//
|
||
// load the pic from disk
|
||
//
|
||
R_LoadImage( name, &pic, &width, &height );
|
||
if ( pic == NULL ) {
|
||
return NULL;
|
||
}
|
||
|
||
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
|
||
ri.Free( pic );
|
||
ismaptexture = 0;
|
||
return image;
|
||
}
|
||
|
||
|
||
/*
|
||
================
|
||
R_CreateDlightImage
|
||
================
|
||
*/
|
||
#define DLIGHT_SIZE 16
|
||
static void R_CreateDlightImage( void ) {
|
||
int x,y;
|
||
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
||
int b;
|
||
|
||
// make a centered inverse-square falloff blob for dynamic lighting
|
||
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
||
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
||
float d;
|
||
|
||
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
||
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
||
b = 4000 / d;
|
||
if (b > 255) {
|
||
b = 255;
|
||
} else if ( b < 75 ) {
|
||
b = 0;
|
||
}
|
||
data[y][x][0] =
|
||
data[y][x][1] =
|
||
data[y][x][2] = b;
|
||
data[y][x][3] = 255;
|
||
}
|
||
}
|
||
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
||
// tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
||
|
||
}
|
||
|
||
|
||
/*
|
||
=================
|
||
R_InitFogTable
|
||
=================
|
||
*/
|
||
void R_InitFogTable( void ) {
|
||
int i;
|
||
float d;
|
||
float exp;
|
||
|
||
exp = 0.5;
|
||
|
||
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
||
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
||
|
||
tr.fogTable[i] = d;
|
||
}
|
||
}
|
||
|
||
/*
|
||
================
|
||
R_FogFactor
|
||
|
||
Returns a 0.0 to 1.0 fog density value
|
||
This is called for each texel of the fog texture on startup
|
||
and for each vertex of transparent shaders in fog dynamically
|
||
================
|
||
*/
|
||
float R_FogFactor( float s, float t ) {
|
||
float d;
|
||
|
||
s -= 1.0/512;
|
||
if ( s < 0 ) {
|
||
return 0;
|
||
}
|
||
if ( t < 1.0/32 ) {
|
||
return 0;
|
||
}
|
||
if ( t < 31.0/32 ) {
|
||
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
||
}
|
||
|
||
// we need to leave a lot of clamp range
|
||
s *= 8;
|
||
|
||
if ( s > 1.0 ) {
|
||
s = 1.0;
|
||
}
|
||
|
||
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
||
|
||
return d;
|
||
}
|
||
|
||
/*
|
||
================
|
||
R_CreateFogImage
|
||
================
|
||
*/
|
||
#define FOG_S 256
|
||
#define FOG_T 32
|
||
static void R_CreateFogImage( void ) {
|
||
int x,y;
|
||
byte *data;
|
||
float d;
|
||
float borderColor[4];
|
||
force32upload = 1; // leilei - paletted fog fix
|
||
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
||
|
||
// S is distance, T is depth
|
||
for (x=0 ; x<FOG_S ; x++) {
|
||
for (y=0 ; y<FOG_T ; y++) {
|
||
// d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
||
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
||
|
||
|
||
data[(y*FOG_S+x)*4+0] =
|
||
data[(y*FOG_S+x)*4+1] =
|
||
data[(y*FOG_S+x)*4+2] = 255;
|
||
data[(y*FOG_S+x)*4+3] = 255*d;
|
||
}
|
||
}
|
||
|
||
|
||
// standard openGL clamping doesn't really do what we want -- it includes
|
||
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
|
||
// what we want.
|
||
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
||
ri.Hunk_FreeTempMemory( data );
|
||
|
||
borderColor[0] = 1.0;
|
||
borderColor[1] = 1.0;
|
||
borderColor[2] = 1.0;
|
||
borderColor[3] = 1;
|
||
|
||
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
|
||
force32upload = 0; // leilei - paletted fog fix
|
||
}
|
||
|
||
/*
|
||
==================
|
||
R_CreateDefaultImage
|
||
==================
|
||
*/
|
||
#define DEFAULT_SIZE 16
|
||
static void R_CreateDefaultImage( void ) {
|
||
int x;
|
||
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
||
|
||
// the default image will be a box, to allow you to see the mapping coordinates
|
||
Com_Memset( data, 32, sizeof( data ) );
|
||
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
||
data[0][x][0] =
|
||
data[0][x][1] =
|
||
data[0][x][2] =
|
||
data[0][x][3] = 255;
|
||
|
||
data[x][0][0] =
|
||
data[x][0][1] =
|
||
data[x][0][2] =
|
||
data[x][0][3] = 255;
|
||
|
||
data[DEFAULT_SIZE-1][x][0] =
|
||
data[DEFAULT_SIZE-1][x][1] =
|
||
data[DEFAULT_SIZE-1][x][2] =
|
||
data[DEFAULT_SIZE-1][x][3] = 255;
|
||
|
||
data[x][DEFAULT_SIZE-1][0] =
|
||
data[x][DEFAULT_SIZE-1][1] =
|
||
data[x][DEFAULT_SIZE-1][2] =
|
||
data[x][DEFAULT_SIZE-1][3] = 255;
|
||
}
|
||
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
|
||
}
|
||
|
||
/*
|
||
==================
|
||
R_CreateBuiltinImages
|
||
==================
|
||
*/
|
||
void R_CreateBuiltinImages( void ) {
|
||
int x,y;
|
||
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
||
|
||
hackoperation = 0;
|
||
R_CreateDefaultImage();
|
||
|
||
// we use a solid white image instead of disabling texturing
|
||
Com_Memset( data, 255, sizeof( data ) );
|
||
ismaptexture = 0;
|
||
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
||
|
||
// with overbright bits active, we need an image which is some fraction of full color,
|
||
// for default lightmaps, etc
|
||
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
||
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
||
data[y][x][0] =
|
||
data[y][x][1] =
|
||
data[y][x][2] = tr.identityLightByte;
|
||
data[y][x][3] = 255;
|
||
}
|
||
}
|
||
|
||
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
||
|
||
|
||
for(x=0;x<32;x++) {
|
||
// scratchimage is usually used for cinematic drawing
|
||
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
|
||
}
|
||
|
||
|
||
R_CreateDlightImage();
|
||
|
||
R_CreateFogImage();
|
||
//tr.fogImage = R_FindImageFile( "gfx/engine/fog.tga", 0, IMGFLAG_CLAMPTOEDGE )
|
||
//tr.dlightImage = R_FindImageFile( "gfx/engine/dlight.tga", 0, IMGFLAG_CLAMPTOEDGE );
|
||
}
|
||
|
||
|
||
extern cvar_t *r_alternateBrightness;
|
||
/*
|
||
===============
|
||
R_SetColorMappings
|
||
===============
|
||
*/
|
||
void R_SetColorMappings( void ) {
|
||
int i, j;
|
||
float g;
|
||
int inf;
|
||
int shift;
|
||
|
||
// setup the overbright lighting
|
||
tr.overbrightBits = r_overBrightBits->integer;
|
||
if ( !glConfig.deviceSupportsGamma && !r_alternateBrightness->integer) {
|
||
tr.overbrightBits = 0; // need hardware gamma for overbright
|
||
}
|
||
|
||
// never overbright in windowed mode
|
||
if ( !glConfig.isFullscreen && !r_alternateBrightness->integer)
|
||
{
|
||
tr.overbrightBits = 0;
|
||
}
|
||
|
||
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
|
||
if ( glConfig.colorBits > 16 ) {
|
||
if ( tr.overbrightBits > 2 ) {
|
||
tr.overbrightBits = 2;
|
||
}
|
||
} else {
|
||
if ( tr.overbrightBits > 1 ) {
|
||
tr.overbrightBits = 1;
|
||
}
|
||
}
|
||
if ( tr.overbrightBits < 0 ) {
|
||
tr.overbrightBits = 0;
|
||
}
|
||
|
||
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
||
tr.identityLightByte = 255 * tr.identityLight;
|
||
|
||
|
||
if ( r_intensity->value <= 1 ) {
|
||
ri.Cvar_Set( "r_intensity", "1" );
|
||
}
|
||
|
||
if ( r_gamma->value < 0.5f ) {
|
||
ri.Cvar_Set( "r_gamma", "0.5" );
|
||
} else if ( r_gamma->value > 3.0f ) {
|
||
ri.Cvar_Set( "r_gamma", "3.0" );
|
||
}
|
||
|
||
g = r_gamma->value;
|
||
|
||
if (r_alternateBrightness->integer != 1) // leilei - don't do the shift to the brightness when we do alternate. This allows
|
||
shift = tr.overbrightBits; // hardware gamma to work (if available) since we can't do alternate gamma via blends
|
||
else shift = 0; // don't
|
||
|
||
for ( i = 0; i < 256; i++ ) {
|
||
if ( g == 1 ) {
|
||
inf = i;
|
||
} else {
|
||
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
||
}
|
||
inf <<= shift;
|
||
if (inf < 0) {
|
||
inf = 0;
|
||
}
|
||
if (inf > 255) {
|
||
inf = 255;
|
||
}
|
||
s_gammatable[i] = inf;
|
||
}
|
||
|
||
for (i=0 ; i<256 ; i++) {
|
||
j = i * r_intensity->value;
|
||
if (j > 255) {
|
||
j = 255;
|
||
}
|
||
s_intensitytable[i] = j;
|
||
}
|
||
|
||
if ( glConfig.deviceSupportsGamma && r_alternateBrightness->integer != 2)
|
||
{
|
||
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
||
}
|
||
}
|
||
|
||
/*
|
||
===============
|
||
R_InitImages
|
||
===============
|
||
*/
|
||
void R_InitImages( void ) {
|
||
Com_Memset(hashTable, 0, sizeof(hashTable));
|
||
// build brightness translation tables
|
||
R_SetColorMappings();
|
||
|
||
// leilei - paletted texture support
|
||
if (r_texturebits->integer == 8)
|
||
R_InitPalette();
|
||
|
||
// create default texture and white texture
|
||
R_CreateBuiltinImages();
|
||
}
|
||
|
||
/*
|
||
===============
|
||
R_DeleteTextures
|
||
===============
|
||
*/
|
||
void R_DeleteTextures( void ) {
|
||
int i;
|
||
|
||
for ( i=0; i<tr.numImages ; i++ ) {
|
||
qglDeleteTextures( 1, &tr.images[i]->texnum );
|
||
}
|
||
Com_Memset( tr.images, 0, sizeof( tr.images ) );
|
||
|
||
tr.numImages = 0;
|
||
|
||
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
|
||
if ( qglActiveTextureARB ) {
|
||
GL_SelectTexture( 1 );
|
||
qglBindTexture( GL_TEXTURE_2D, 0 );
|
||
GL_SelectTexture( 0 );
|
||
qglBindTexture( GL_TEXTURE_2D, 0 );
|
||
} else {
|
||
qglBindTexture( GL_TEXTURE_2D, 0 );
|
||
}
|
||
}
|
||
|
||
/*
|
||
============================================================================
|
||
|
||
SKINS
|
||
|
||
============================================================================
|
||
*/
|
||
|
||
/*
|
||
==================
|
||
CommaParse
|
||
|
||
This is unfortunate, but the skin files aren't
|
||
compatable with our normal parsing rules.
|
||
==================
|
||
*/
|
||
static char *CommaParse( char **data_p ) {
|
||
int c = 0, len;
|
||
char *data;
|
||
static char com_token[MAX_TOKEN_CHARS];
|
||
|
||
data = *data_p;
|
||
len = 0;
|
||
com_token[0] = 0;
|
||
|
||
// make sure incoming data is valid
|
||
if ( !data ) {
|
||
*data_p = NULL;
|
||
return com_token;
|
||
}
|
||
|
||
while ( 1 ) {
|
||
// skip whitespace
|
||
while( (c = *data) <= ' ') {
|
||
if( !c ) {
|
||
break;
|
||
}
|
||
data++;
|
||
}
|
||
|
||
|
||
c = *data;
|
||
|
||
// skip double slash comments
|
||
if ( c == '/' && data[1] == '/' )
|
||
{
|
||
while (*data && *data != '\n')
|
||
data++;
|
||
}
|
||
// skip /* */ comments
|
||
else if ( c=='/' && data[1] == '*' )
|
||
{
|
||
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
||
{
|
||
data++;
|
||
}
|
||
if ( *data )
|
||
{
|
||
data += 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
if ( c == 0 ) {
|
||
return "";
|
||
}
|
||
|
||
// handle quoted strings
|
||
if (c == '\"')
|
||
{
|
||
data++;
|
||
while (1)
|
||
{
|
||
c = *data++;
|
||
if (c=='\"' || !c)
|
||
{
|
||
com_token[len] = 0;
|
||
*data_p = ( char * ) data;
|
||
return com_token;
|
||
}
|
||
if (len < MAX_TOKEN_CHARS)
|
||
{
|
||
com_token[len] = c;
|
||
len++;
|
||
}
|
||
}
|
||
}
|
||
|
||
// parse a regular word
|
||
do
|
||
{
|
||
if (len < MAX_TOKEN_CHARS)
|
||
{
|
||
com_token[len] = c;
|
||
len++;
|
||
}
|
||
data++;
|
||
c = *data;
|
||
} while (c>32 && c != ',' );
|
||
|
||
if (len == MAX_TOKEN_CHARS)
|
||
{
|
||
// ri.Printf (PRINT_DEVELOPER, "Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
|
||
len = 0;
|
||
}
|
||
com_token[len] = 0;
|
||
|
||
*data_p = ( char * ) data;
|
||
return com_token;
|
||
}
|
||
|
||
|
||
/*
|
||
===============
|
||
RE_RegisterSkin
|
||
|
||
===============
|
||
*/
|
||
qhandle_t RE_RegisterSkin( const char *name ) {
|
||
qhandle_t hSkin;
|
||
skin_t *skin;
|
||
skinSurface_t *surf;
|
||
union {
|
||
char *c;
|
||
void *v;
|
||
} text;
|
||
char *text_p;
|
||
char *token;
|
||
char surfName[MAX_QPATH];
|
||
|
||
if ( !name || !name[0] ) {
|
||
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
|
||
return 0;
|
||
}
|
||
|
||
if ( strlen( name ) >= MAX_QPATH ) {
|
||
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
|
||
return 0;
|
||
}
|
||
|
||
|
||
// see if the skin is already loaded
|
||
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
||
skin = tr.skins[hSkin];
|
||
if ( !Q_stricmp( skin->name, name ) ) {
|
||
if( skin->numSurfaces == 0 ) {
|
||
return 0; // default skin
|
||
}
|
||
return hSkin;
|
||
}
|
||
}
|
||
|
||
// allocate a new skin
|
||
if ( tr.numSkins == MAX_SKINS ) {
|
||
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
||
return 0;
|
||
}
|
||
tr.numSkins++;
|
||
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
||
tr.skins[hSkin] = skin;
|
||
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
||
skin->numSurfaces = 0;
|
||
|
||
R_IssuePendingRenderCommands();
|
||
|
||
// If not a .skin file, load as a single shader
|
||
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
||
skin->numSurfaces = 1;
|
||
skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
|
||
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
|
||
return hSkin;
|
||
}
|
||
|
||
// load and parse the skin file
|
||
ri.FS_ReadFile( name, &text.v );
|
||
if ( !text.c ) {
|
||
return 0;
|
||
}
|
||
|
||
text_p = text.c;
|
||
while ( text_p && *text_p ) {
|
||
// get surface name
|
||
token = CommaParse( &text_p );
|
||
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
||
|
||
if ( !token[0] ) {
|
||
break;
|
||
}
|
||
// lowercase the surface name so skin compares are faster
|
||
Q_strlwr( surfName );
|
||
|
||
if ( *text_p == ',' ) {
|
||
text_p++;
|
||
}
|
||
|
||
if ( strstr( token, "tag_" ) ) {
|
||
continue;
|
||
}
|
||
|
||
// parse the shader name
|
||
token = CommaParse( &text_p );
|
||
|
||
if ( skin->numSurfaces >= MD3_MAX_SURFACES ) {
|
||
ri.Printf( PRINT_WARNING, "WARNING: Ignoring surfaces in '%s', the max is %d surfaces!\n", name, MD3_MAX_SURFACES );
|
||
break;
|
||
}
|
||
|
||
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
||
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
||
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
|
||
skin->numSurfaces++;
|
||
}
|
||
|
||
ri.FS_FreeFile( text.v );
|
||
|
||
|
||
// never let a skin have 0 shaders
|
||
if ( skin->numSurfaces == 0 ) {
|
||
return 0; // use default skin
|
||
}
|
||
|
||
return hSkin;
|
||
}
|
||
|
||
|
||
/*
|
||
===============
|
||
R_InitSkins
|
||
===============
|
||
*/
|
||
void R_InitSkins( void ) {
|
||
skin_t *skin;
|
||
|
||
tr.numSkins = 1;
|
||
|
||
// make the default skin have all default shaders
|
||
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
||
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
||
skin->numSurfaces = 1;
|
||
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
|
||
skin->surfaces[0]->shader = tr.defaultShader;
|
||
}
|
||
|
||
/*
|
||
===============
|
||
R_GetSkinByHandle
|
||
===============
|
||
*/
|
||
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
||
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
||
return tr.skins[0];
|
||
}
|
||
return tr.skins[ hSkin ];
|
||
}
|
||
|
||
/*
|
||
===============
|
||
R_SkinList_f
|
||
===============
|
||
*/
|
||
void R_SkinList_f( void ) {
|
||
int i, j;
|
||
skin_t *skin;
|
||
|
||
ri.Printf (PRINT_ALL, "------------------\n");
|
||
|
||
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
||
skin = tr.skins[i];
|
||
|
||
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
|
||
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
||
ri.Printf( PRINT_ALL, " %s = %s\n",
|
||
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
|
||
}
|
||
}
|
||
ri.Printf (PRINT_ALL, "------------------\n");
|
||
}
|
||
|