Files
illusion-arena-engine/code/renderer_oa/tr_flares.c
2014-09-22 06:52:33 -04:00

1261 lines
36 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_flares.c
#include "tr_local.h"
/*
=============================================================================
LIGHT FLARES
A light flare is an effect that takes place inside the eye when bright light
sources are visible. The size of the flare relative to the screen is nearly
constant, irrespective of distance, but the intensity should be proportional to the
projected area of the light source.
A surface that has been flagged as having a light flare will calculate the depth
buffer value that its midpoint should have when the surface is added.
After all opaque surfaces have been rendered, the depth buffer is read back for
each flare in view. If the point has not been obscured by a closer surface, the
flare should be drawn.
Surfaces that have a repeated texture should never be flagged as flaring, because
there will only be a single flare added at the midpoint of the polygon.
To prevent abrupt popping, the intensity of the flare is interpolated up and
down as it changes visibility. This involves scene to scene state, unlike almost
all other aspects of the renderer, and is complicated by the fact that a single
frame may have multiple scenes.
RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially
up to five or more times in a frame with 3D status bar icons).
=============================================================================
*/
// flare states maintain visibility over multiple frames for fading
// layers: view, mirror, menu
typedef struct flare_s {
struct flare_s *next; // for active chain
int addedFrame;
qboolean inPortal; // true if in a portal view of the scene
int frameSceneNum;
void *surface;
int fogNum;
int fadeTime;
qboolean visible; // state of last test
float drawIntensity; // may be non 0 even if !visible due to fading
int windowX, windowY;
float eyeZ;
vec3_t origin;
vec3_t color;
int radius; // leilei - for dynamic light flares
qboolean peek;
int ftype; // leilei - flare types
// 0 - off
// 1 - nromal flare
// 2 - hexagonal polygons (tcpp)
// 3 - glow polygons (tcpp)
// 4 - hex and glow polygons (tcpp)
// 5 - lens reflections like it's 1997
// 6 - fully modulated lens reflections
// 7 - unmodulated lens reflections
// 8 - anamorphic like it's 2009
struct shader_s *theshader; // leilei - custom flare shaders
int type; // 0 - map, 1 - dlight, 2 - sun
} flare_t;
#define MAX_FLARES 256 // was 128
flare_t r_flareStructs[MAX_FLARES];
flare_t *r_activeFlares, *r_inactiveFlares;
vec3_t sunorg; // sun flare hack
int flareCoeff;
/*
==================
R_SetFlareCoeff
==================
*/
static void R_SetFlareCoeff( void ) {
if(r_flareCoeff->value == 0.0f)
flareCoeff = atof(FLARE_STDCOEFF);
else
flareCoeff = r_flareCoeff->value;
}
qboolean forceit; // for low quality flare testing
static int pvrhack = 0; // leilei = powervr workarounds
/*
==================
R_ClearFlares
==================
*/
void R_ClearFlares( void ) {
int i;
Com_Memset( r_flareStructs, 0, sizeof( r_flareStructs ) );
r_activeFlares = NULL;
r_inactiveFlares = NULL;
for ( i = 0 ; i < MAX_FLARES ; i++ ) {
r_flareStructs[i].next = r_inactiveFlares;
r_inactiveFlares = &r_flareStructs[i];
}
R_SetFlareCoeff();
}
/*
==================
RB_AddFlare
This is called at surface tesselation time
==================
*/
float flaredsize; // leilei - dirty flare fix for widescreens
void RB_AddFlare(srfFlare_t *surface, int fogNum, vec3_t point, vec3_t color, vec3_t normal, int radii, int efftype, float scaled, int type) {
int i;
flare_t *f, *oldest;
vec3_t local;
float d = 1;
vec4_t eye, clip, normalized, window;
backEnd.pc.c_flareAdds++;
// fade the intensity of the flare down as the
// light surface turns away from the viewer
if(normal && (normal[0] || normal[1] || normal[2]) )
{
VectorSubtract( backEnd.viewParms.or.origin, point, local );
VectorNormalizeFast(local);
d = DotProduct(local, normal);
// If the viewer is behind the flare don't add it.
if(d < 0)
return;
}
flaredsize = backEnd.viewParms.viewportHeight;
R_TransformModelToClip( point, backEnd.or.modelMatrix,
backEnd.viewParms.projectionMatrix, eye, clip );
// check to see if the point is completely off screen
for ( i = 0 ; i < 3 ; i++ ) {
if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) {
return;
}
}
R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window );
if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth
|| window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) {
return; // shouldn't happen, since we check the clip[] above, except for FP rounding
}
// see if a flare with a matching surface, scene, and view exists
oldest = r_flareStructs;
for ( f = r_activeFlares ; f ; f = f->next ) {
if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal ) {
break;
}
}
// allocate a new one
if (!f ) {
if ( !r_inactiveFlares ) {
// the list is completely full
return;
}
f = r_inactiveFlares;
r_inactiveFlares = r_inactiveFlares->next;
f->next = r_activeFlares;
r_activeFlares = f;
f->surface = surface;
f->frameSceneNum = backEnd.viewParms.frameSceneNum;
f->inPortal = backEnd.viewParms.isPortal;
f->addedFrame = -1;
}
if ( f->addedFrame != backEnd.viewParms.frameCount - 1 ) {
f->visible = qfalse;
f->fadeTime = backEnd.refdef.time - 2000;
}
f->addedFrame = backEnd.viewParms.frameCount;
f->fogNum = fogNum;
f->ftype = efftype;
VectorCopy(point, f->origin);
VectorCopy( color, f->color );
if ( (r_flaresDlightFade->integer) && (type == 1) ) { // leilei - dynamic light flares fading instantly
f->fadeTime = -666;
}
if (!pvrhack) // leilei - don't do this on powervr
VectorScale( f->color, d, f->color );
// save info needed to test
f->windowX = backEnd.viewParms.viewportX + window[0];
f->windowY = backEnd.viewParms.viewportY + window[1];
f->radius = radii * scaled * 0.17;
f->eyeZ = eye[2];
f->theshader = tr.flareShader;
f->type = type;
if (f->type == 0)
f->theshader = surface->shadder;
else
f->theshader = tr.flareShader;
if ( (type == 1) && (r_flaresDlightScale->value) ) { // leilei - dynamic light flare scale
float ef = r_flaresDlightScale->value;
if (ef > 1.0f) ef = 1.0f;
if (ef < 0.01f) ef = 0.01f;
f->radius *= ef;
}
if ( (type == 1) && (r_flaresDlightOpacity->value) ) { // leilei - dynamic light flare scale
float ef = r_flaresDlightOpacity->value;
if (ef > 1.0f) ef = 1.0f;
if (ef < 0.1f) ef = 0.1f;
f->color[0] *= ef;
f->color[1] *= ef;
f->color[2] *= ef;
}
// if ( (r_flaresDlightShrink->integer) && (type == 1) ) // leilei - dynamic light flares shrinking when close
// {
// }
}
/*
==================
RB_AddDlightFlares
==================
*/
void RB_AddDlightFlares( void ) {
dlight_t *l;
int i, j, k;
fog_t *fog = NULL;
if ( !r_flaresDlight->integer ) { // leilei - dynamic light flares will be separate from flares
return;
}
l = backEnd.refdef.dlights;
if(tr.world)
fog = tr.world->fogs;
for (i=0 ; i<backEnd.refdef.num_dlights ; i++, l++) {
if(fog)
{
// find which fog volume the light is in
for ( j = 1 ; j < tr.world->numfogs ; j++ ) {
fog = &tr.world->fogs[j];
for ( k = 0 ; k < 3 ; k++ ) {
if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) {
break;
}
}
if ( k == 3 ) {
break;
}
}
if ( j == tr.world->numfogs ) {
j = 0;
}
}
else
j = 0;
RB_AddFlare( (void *)l, j, l->origin, l->color, NULL, l->radius * 0.6, r_flaresDlight->integer, 1.0f, 1);
}
}
/*
===============================================================================
FLARE BACK END
===============================================================================
*/
/*
==================
RB_TestFlareFast
faster simple one.
==================
*/
static void RB_TestFlareFast( flare_t *f ) {
float depth;
qboolean visible;
float fade;
float screenZ;
backEnd.pc.c_flareTests++;
// visible = 1; // it's visible damnit
// doing a readpixels is as good as doing a glFinish(), so
// don't bother with another sync
glState.finishCalled = qfalse;
// read back the z buffer contents
qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth );
screenZ = backEnd.viewParms.projectionMatrix[14] /
( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] );
visible = ( -f->eyeZ - -screenZ ) < 24;
if ( visible ) {
if ( !f->visible ) {
f->visible = qtrue;
f->fadeTime = backEnd.refdef.time - 1;
}
{
fade = 1; // instant fade
}
} else {
if ( f->visible ) {
f->visible = qfalse;
f->fadeTime = backEnd.refdef.time - 1;
}
fade = 0; // instant appear
}
if ( fade < 0 ) {
fade = 0;
}
if ( fade > 1 ) {
fade = 1;
}
f->drawIntensity = fade;
}
/*
==================
RB_TestFlare
==================
*/
static void RB_TestFlare( flare_t *f ) {
float depth;
qboolean visible;
float fade;
float screenZ;
if (f->fadeTime == -666)
{
RB_TestFlareFast(f);
return;
}
backEnd.pc.c_flareTests++;
// doing a readpixels is as good as doing a glFinish(), so
// don't bother with another sync
glState.finishCalled = qfalse;
// read back the z buffer contents
qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth );
screenZ = backEnd.viewParms.projectionMatrix[14] /
( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] );
visible = ( -f->eyeZ - -screenZ ) < 24;
if ( visible ) {
if ( !f->visible ) {
f->visible = qtrue;
f->fadeTime = backEnd.refdef.time - 1;
}
{
fade = ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value;
}
} else {
if ( f->visible ) {
f->visible = qfalse;
f->fadeTime = backEnd.refdef.time - 1;
}
fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value;
}
if ( fade < 0 ) {
fade = 0;
}
if ( fade > 1 ) {
fade = 1;
}
f->drawIntensity = fade;
}
/*
==================
RB_RenderFlare
==================
*/
void RB_RenderFlare( flare_t *f ) {
float size;
vec3_t color;
int iColor[3];
float distance, intensity, factor;
byte fogFactors[3] = {255, 255, 255};
int ind=0;
int alphcal;
backEnd.pc.c_flareRenders++;
flaredsize = backEnd.viewParms.viewportHeight * (f->radius * 0.06);
float flaredsize2 = backEnd.viewParms.viewportHeight;
// We don't want too big values anyways when dividing by distance.
if(f->eyeZ > -1.0f)
distance = 1.0f;
else
distance = -f->eyeZ;
if ( (r_flaresDlightShrink->integer) && (f->type == 1) ) // leilei - dynamic light flares shrinking when close
{
float newd = distance / (48.0f);
if (newd > 1) newd = 1.0f;
flaredsize *= newd;
}
if(!f->radius)
f->radius = 0.0f; // leilei - don't do a radius if there is no radius at all!
// calculate the flare size..
/*
* This is an alternative to intensity scaling. It changes the size of the flare on screen instead
* with growing distance. See in the description at the top why this is not the way to go.
*/
// size will change ~ 1/r.
if (r_flareMethod->integer == 1 || r_flareMethod->integer == 4 ){ // The "not the way to go" method.
// seen in EF
size = flaredsize * (r_flareSize->value / (distance * -2.0f));
}
else if (r_flareMethod->integer == 2){ // Raven method
size = flaredsize * ( r_flareSize->value/640.0f + 8 / -f->eyeZ ); }
else
{
size = flaredsize * ( (r_flareSize->value) /640.0f + 8 / distance );
}
/*
* As flare sizes stay nearly constant with increasing distance we must decrease the intensity
* to achieve a reasonable visual result. The intensity is ~ (size^2 / distance^2) which can be
* got by considering the ratio of
* (flaresurface on screen) : (Surface of sphere defined by flare origin and distance from flare)
* An important requirement is:
* intensity <= 1 for all distances.
*
* The formula used here to compute the intensity is as follows:
* intensity = flareCoeff * size^2 / (distance + size*sqrt(flareCoeff))^2
* As you can see, the intensity will have a max. of 1 when the distance is 0.
* The coefficient flareCoeff will determine the falloff speed with increasing distance.
*/
factor = distance + size * sqrt(flareCoeff);
if (r_flareMethod->integer == 4) // leilei - EF didn't scale intensity on distance. Speed I guess
intensity = 1;
else
intensity = flareCoeff * size * size / (factor * factor);
if (r_flareMethod->integer == 1) // leilei - stupid hack to fix the not the way method
{
if (intensity > 1) intensity = 1;
}
if (pvrhack)
VectorScale(f->color, 1, color );
else
VectorScale(f->color, f->drawIntensity * intensity, color);
// Calculations for fogging
if(tr.world && f->fogNum > 0 && f->fogNum < tr.world->numfogs)
{
tess.numVertexes = 1;
VectorCopy(f->origin, tess.xyz[0]);
tess.fogNum = f->fogNum;
RB_CalcModulateColorsByFog(fogFactors);
// We don't need to render the flare if colors are 0 anyways.
if(!(fogFactors[0] || fogFactors[1] || fogFactors[2]))
return;
}
iColor[0] = color[0] * fogFactors[0];
iColor[1] = color[1] * fogFactors[1];
iColor[2] = color[2] * fogFactors[2];
if (pvrhack)
alphcal = f->drawIntensity * tr.identityLight * 255; // Calculate alphas from intensity instead
else
alphcal = 255; // Don't mess with alpha.
float halfer = 1;
if (f->ftype == 5 || f->ftype == 6 || f->ftype == 7 || f->ftype == 166){
RB_BeginSurface( tr.flareShaderAtlas, f->fogNum );
halfer = 0.5f;
}
else
{
if (r_flareQuality->integer) // leilei - high quality flares get no depth testing
{
int index;
for(index = 0; index <f->theshader->numUnfoggedPasses; index++)
{
f->theshader->stages[index]->adjustColorsForFog = ACFF_NONE;
f->theshader->stages[index]->stateBits |= GLS_DEPTHTEST_DISABLE;
}
}
RB_BeginSurface( f->theshader, f->fogNum );
halfer = 1;
}
// FIXME: use quadstamp?
tess.xyz[tess.numVertexes][0] = f->windowX - size;
tess.xyz[tess.numVertexes][1] = f->windowY - size;
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX - size;
tess.xyz[tess.numVertexes][1] = f->windowY + size;
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 1 * halfer;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX + size;
tess.xyz[tess.numVertexes][1] = f->windowY + size;
tess.texCoords[tess.numVertexes][0][0] = 1 * halfer;
tess.texCoords[tess.numVertexes][0][1] = 1 * halfer;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX + size;
tess.xyz[tess.numVertexes][1] = f->windowY - size;
tess.texCoords[tess.numVertexes][0][0] = 1 * halfer;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 1;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 3;
ind+=4;
// reflections -- tcpparena
if(f->ftype == 2 || f->ftype == 4){
// renders sharp lens flare.
float cx, cy;
float dx, dy;
float size2;
const float poses[]= {-.15f, 0.6f, -.1f, -.6f, -1.8f};
const float sizes[]= {0.14f, 0.2f, 0.1f, 0.2f, 1.0f};
int brightness1[]= {8,25, 40, 26, 10}; // red
int brightness2[]= {15,23, 25, 30, 5}; // green
int brightness3[]= {12,20, 30, 28, 10}; // blue
const float r3_2=0.866025403784439f;
int n;
cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1);
cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1);
for(n=0;n<5;n++){
dx=(f->windowX-cx)*poses[n]+cx;
dy=(f->windowY-cy)*poses[n]+cy;
size2=sizes[n]*backEnd.viewParms.viewportWidth*.25f;
brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value);
brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value);
brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value);
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx-size2*.5f;
tess.xyz[tess.numVertexes][1] = dy-size2*r3_2;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2*.5f;
tess.xyz[tess.numVertexes][1] = dy-size2*r3_2;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2*.5f;
tess.xyz[tess.numVertexes][1] = dy+size2*r3_2;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx-size2*.5f;
tess.xyz[tess.numVertexes][1] = dy+size2*r3_2;
tess.texCoords[tess.numVertexes][0][0] = .5f;
tess.texCoords[tess.numVertexes][0][1] = .5f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 1+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 3+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 4+ind;
tess.indexes[tess.numIndexes++] = 3+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 5+ind;
tess.indexes[tess.numIndexes++] = 4+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
ind+=6;
}
}
if(f->ftype == 3 || f->ftype == 4){
// renders fuzzy lens flare.
float cx, cy;
float dx, dy;
float size2;
const float poses[]= {1.7f, -0.2f};
const float sizes[]= {1.2f, 0.2f};
int brightness1[]= {25, 40}; // red
int brightness2[]= {35, 10}; // green
int brightness3[]= {30, 15}; // blue
int n;
cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1);
cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1);
for(n=0;n<2;n++){
dx=(f->windowX-cx)*poses[n]+cx;
dy=(f->windowY-cy)*poses[n]+cy;
size2=sizes[n]*flaredsize2*.25f;
brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value);
brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value);
brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value);
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy-size2;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy+size2;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 1.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy+size2;
tess.texCoords[tess.numVertexes][0][0] = 1.f;
tess.texCoords[tess.numVertexes][0][1] = 1.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy-size2;
tess.texCoords[tess.numVertexes][0][0] = 1.f;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 1+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 3+ind;
ind+=4;
}
}
float drak;
if(f->ftype == 5 || f->ftype == 6 || f->ftype == 7 || f->ftype == 166){
// renders special atlas lens flare like fuzzy but not fuzzy
int modess;
if (f->ftype == 6) modess = 1; // mono rings
else if (f->ftype == 7 || f->ftype == 166) modess = 2; // force normal colored rings
else modess = 0; // colorable colored rings
float cx, cy;
float dx, dy;
float size2;
float poses[]= {-1.0f, -0.75f, -0.64f, -0.57f, -0.37f, -0.35f, -0.3f, 1.2f, -.21f, 0.15f, .38f, .56f, .52f, 0.6f, 1.2f, 1.37f};
float sizes[]= {1.15f, 0.7f, 0.2f, 0.35f, 0.24f, .86f, .357f, 2.3f, 0.15f, 0.09f, 0.21f, 0.7f, 0.37f, 0.23f, 0.3f, 1.2f};
float atlases[]={4, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 7, 8, 2, 3, 2};
float downsize1 = 0.25f;
float downsize2 = 0.25f;
int brightness1[]= {16, 5, 6, 18, 18, 38, 18, 12, 24, 24, 18, 3, 3, 0, 12, 12};
int brightness2[]= {16, 32, 8, 17, 17, 37, 17, 11, 28, 28, 17, 3, 3, 0, 12, 10};
int brightness3[]= {27, 3, 24, 0, 0, 17, 0, 4, 28, 28, 0, 17, 12, 12, 10, 10};
int n;
vec3_t colarz;
cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1);
cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1);
for(n=0;n<16;n++){
dx=(f->windowX-cx)*poses[n]+cx;
dy=(f->windowY-cy)*poses[n]+cy;
size2=sizes[n]*flaredsize2*.25f;
drak = f->radius * 0.07;
if (atlases[n] == 1){ downsize1 = 1; downsize2 = 1; };
if (atlases[n] == 3){ downsize1 = 1; downsize2 = -1; };
if (atlases[n] == 4){ downsize1 = -1; downsize2 = -1; };
if (atlases[n] == 2){ downsize1 = -1; downsize2 = 1; };
if (modess == 1){
brightness1[n] = brightness1[n] + brightness2[n] + brightness3[n] * 0.0100;
brightness2[n] = brightness1[n]; brightness3[n] = brightness1[n];
}
brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value) * drak;
brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value) * drak;
brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value) * drak;
if (modess == 2){
iColor[0] = 32.0f; iColor[1] = 32.0f; iColor[2] = 32.0f;
}
if (pvrhack){
if (modess == 2){
colarz[0] = ceil(iColor[0]*brightness1[n]);
colarz[1] = ceil(iColor[1]*brightness2[n]);
colarz[2] = ceil(iColor[2]*brightness3[n]);
}
else
{
colarz[0] = ceil(iColor[0]);
colarz[1] = ceil(iColor[1]);
colarz[2] = ceil(iColor[2]);
}
alphcal=r_lensReflectionBrightness->value * drak * 56;
}
else
{
colarz[0] = (iColor[0]*brightness1[n])>>8;
colarz[1] = (iColor[1]*brightness2[n])>>8;
colarz[2] = (iColor[2]*brightness3[n])>>8;
}
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy-size2;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = colarz[0];
tess.vertexColors[tess.numVertexes][1] = colarz[1];
tess.vertexColors[tess.numVertexes][2] = colarz[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy+size2;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 0.5f * downsize2;
tess.vertexColors[tess.numVertexes][0] = colarz[0];
tess.vertexColors[tess.numVertexes][1] = colarz[1];
tess.vertexColors[tess.numVertexes][2] = colarz[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy+size2;
tess.texCoords[tess.numVertexes][0][0] = 0.5f * downsize1;
tess.texCoords[tess.numVertexes][0][1] = 0.5f * downsize2;
tess.vertexColors[tess.numVertexes][0] = colarz[0];
tess.vertexColors[tess.numVertexes][1] = colarz[1];
tess.vertexColors[tess.numVertexes][2] = colarz[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy-size2;
tess.texCoords[tess.numVertexes][0][0] = 0.5f * downsize1;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = colarz[0];
tess.vertexColors[tess.numVertexes][1] = colarz[1];
tess.vertexColors[tess.numVertexes][2] = colarz[2];
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 1+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 3+ind;
ind+=4;
}
}
if(f->ftype == 8 ){
// renders anamorphic flare
// JUST LIKE TEH MOVEEZ!!!!!!!!!
float cx, cy;
float dx, dy;
float size2;
float size3;
const float poses[]= {0.9f, 1.0f, 1.08f};
const float sizes[]= {1.2f, 6.0f, 4.0f};
const float sizes2[]= {1.2f, 0.14f, 0.2f};
int brightness1[]= {16, 8, 5}; // red
int brightness2[]= {23, 21, 11}; // green
int brightness3[]= {30, 52, 32}; // blue
int n;
cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1);
cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1);
drak = f->radius * 0.02;
for(n=0;n<3;n++){
dx=(f->windowX-cx)*poses[n]+cx;
dy=(f->windowY-cy)*poses[n]+cy;
size2=sizes[n]*flaredsize2 * drak*.25f;
size3=sizes2[n]*flaredsize2 * (drak) *.25f;
brightness1[n]=(int)(brightness1[n]*6 *r_lensReflectionBrightness->value);
brightness2[n]=(int)(brightness2[n]*6 *r_lensReflectionBrightness->value);
brightness3[n]=(int)(brightness3[n]*6 *r_lensReflectionBrightness->value);
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy-size3;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx-size2;
tess.xyz[tess.numVertexes][1] = dy+size3;
tess.texCoords[tess.numVertexes][0][0] = 0.f;
tess.texCoords[tess.numVertexes][0][1] = 1.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy+size3;
tess.texCoords[tess.numVertexes][0][0] = 1.f;
tess.texCoords[tess.numVertexes][0][1] = 1.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = dx+size2;
tess.xyz[tess.numVertexes][1] = dy-size3;
tess.texCoords[tess.numVertexes][0][0] = 1.f;
tess.texCoords[tess.numVertexes][0][1] = 0.f;
tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8;
tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8;
tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8;
tess.vertexColors[tess.numVertexes][3] = alphcal;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 1+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 0+ind;
tess.indexes[tess.numIndexes++] = 2+ind;
tess.indexes[tess.numIndexes++] = 3+ind;
ind+=4;
}
}
RB_EndSurface();
}
/*
==================
RB_RenderFlares
Because flares are simulating an occular effect, they should be drawn after
everything (all views) in the entire frame has been drawn.
Because of the way portals use the depth buffer to mark off areas, the
needed information would be lost after each view, so we are forced to draw
flares after each view.
The resulting artifact is that flares in mirrors or portals don't dim properly
when occluded by something in the main view, and portal flares that should
extend past the portal edge will be overwritten.
==================
*/
void RB_RenderFlares (void) {
flare_t *f;
flare_t **prev;
qboolean draw;
if ( !r_flares->integer && !r_flaresDlight->integer ) {
return;
}
if(r_flareCoeff->modified)
{
R_SetFlareCoeff();
r_flareCoeff->modified = qfalse;
}
// Reset currentEntity to world so that any previously referenced entities
// don't have influence on the rendering of these flares (i.e. RF_ renderer flags).
backEnd.currentEntity = &tr.worldEntity;
backEnd.or = backEnd.viewParms.world;
if (r_flaresDlight->integer)
RB_AddDlightFlares();
// perform z buffer readback on each flare in this view
draw = qfalse;
prev = &r_activeFlares;
while ( ( f = *prev ) != NULL ) {
// throw out any flares that weren't added last frame
if ( f->addedFrame < backEnd.viewParms.frameCount - 1 ) {
*prev = f->next;
f->next = r_inactiveFlares;
r_inactiveFlares = f;
continue;
}
// don't draw any here that aren't from this scene / portal
f->drawIntensity = 0;
if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal ) {
RB_TestFlare( f );
if ( f->drawIntensity ) {
draw = qtrue;
} else {
// this flare has completely faded out, so remove it from the chain
*prev = f->next;
f->next = r_inactiveFlares;
r_inactiveFlares = f;
continue;
}
}
prev = &f->next;
}
if ( !draw ) {
return; // none visible
}
if ( backEnd.viewParms.isPortal ) {
qglDisable (GL_CLIP_PLANE0);
}
qglPushMatrix();
qglLoadIdentity();
qglMatrixMode( GL_PROJECTION );
qglPushMatrix();
qglLoadIdentity();
qglOrtho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth,
backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight,
-99999, 99999 );
for ( f = r_activeFlares ; f ; f = f->next ) {
if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal
&& f->drawIntensity ) {
RB_RenderFlare( f );
}
}
qglPopMatrix();
qglMatrixMode( GL_MODELVIEW );
qglPopMatrix();
}
void RB_DrawSunFlare( void ) {
float size;
float dist;
vec3_t origin, vec1, vec2;
vec3_t temp;
int fetype;
if ( !backEnd.skyRenderedThisView ) {
return;
}
if ( !r_flareSun->integer ) {
return;
}
if ( backEnd.doneSunFlare) // leilei - only do sun once
return;
fetype = r_flareSun->integer;
qglLoadMatrixf( backEnd.viewParms.world.modelMatrix );
qglTranslatef (backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2]);
dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
size = dist * 0.4;
VectorScale( tr.sunDirection, dist, origin );
PerpendicularVector( vec1, tr.sunDirection );
CrossProduct( tr.sunDirection, vec1, vec2 );
VectorScale( vec1, size, vec1 );
VectorScale( vec2, size, vec2 );
// farthest depth range
qglDepthRange( 1.0, 1.0 );
{
vec3_t coll;
coll[0]= 1.0;
coll[1]= 1.0;
coll[2]= 1.0;
coll[0]=tr.sunLight[0]/64;
coll[1]=tr.sunLight[1]/64;
coll[2]=tr.sunLight[2]/64;
int g;
for (g=0;g<3;g++)
if (coll[g] > 1) coll[g] = 1;
VectorCopy( origin, temp );
VectorSubtract( temp, vec1, temp );
VectorAdd( temp, vec2, temp );
VectorCopy( origin, sunorg );
VectorSubtract( sunorg, backEnd.viewParms.or.origin, sunorg );
VectorCopy( backEnd.viewParms.or.origin, sunorg );
VectorAdd( origin, sunorg, sunorg );
size = coll[0] + coll[1] + coll[2] * 805;
RB_AddFlare( (void *)NULL, 0, sunorg, coll, NULL, size, fetype, 1.0f, 2);
}
// back to normal depth range
qglDepthRange( 0.0, 1.0 );
backEnd.doneSunFlare = qtrue;
}