/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_flares.c #include "tr_local.h" #include "../qcommon/cm_local.h" /* ============================================================================= LIGHT FLARES A light flare is an effect that takes place inside the eye when bright light sources are visible. The size of the flare relative to the screen is nearly constant, irrespective of distance, but the intensity should be proportional to the projected area of the light source. A surface that has been flagged as having a light flare will calculate the depth buffer value that its midpoint should have when the surface is added. After all opaque surfaces have been rendered, the depth buffer is read back for each flare in view. If the point has not been obscured by a closer surface, the flare should be drawn. Surfaces that have a repeated texture should never be flagged as flaring, because there will only be a single flare added at the midpoint of the polygon. To prevent abrupt popping, the intensity of the flare is interpolated up and down as it changes visibility. This involves scene to scene state, unlike almost all other aspects of the renderer, and is complicated by the fact that a single frame may have multiple scenes. RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially up to five or more times in a frame with 3D status bar icons). ============================================================================= */ // flare states maintain visibility over multiple frames for fading // layers: view, mirror, menu typedef struct flare_s { struct flare_s *next; // for active chain int addedFrame; qboolean inPortal; // true if in a portal view of the scene int frameSceneNum; void *surface; int fogNum; int fadeTime; qboolean visible; // state of last test float drawIntensity; // may be non 0 even if !visible due to fading int windowX, windowY; float eyeZ; vec3_t origin; vec3_t color; int radius; // leilei - for dynamic light flares qboolean peek; int ftype; // leilei - flare types // 0 - off // 1 - nromal flare // 2 - hexagonal polygons (tcpp) // 3 - glow polygons (tcpp) // 4 - hex and glow polygons (tcpp) // 5 - lens reflections like it's 1997 // 6 - fully modulated lens reflections // 7 - unmodulated lens reflections // 8 - anamorphic like it's 2009 struct shader_s *theshader; // leilei - custom flare shaders int type; // 0 - map, 1 - dlight, 2 - sun float delay; // update delay time } flare_t; #define MAX_FLARES 256 // was 128 flare_t r_flareStructs[MAX_FLARES]; flare_t *r_activeFlares, *r_inactiveFlares; vec3_t sunorg; // sun flare hack int flareCoeff; /* ================== R_SetFlareCoeff ================== */ static void R_SetFlareCoeff( void ) { if(r_flareCoeff->value == 0.0f) flareCoeff = atof(FLARE_STDCOEFF); else flareCoeff = r_flareCoeff->value; } qboolean forceit; // for low quality flare testing static int pvrhack = 0; // leilei = powervr workarounds /* ================== R_ClearFlares ================== */ void R_ClearFlares( void ) { int i; Com_Memset( r_flareStructs, 0, sizeof( r_flareStructs ) ); r_activeFlares = NULL; r_inactiveFlares = NULL; for ( i = 0 ; i < MAX_FLARES ; i++ ) { r_flareStructs[i].next = r_inactiveFlares; r_inactiveFlares = &r_flareStructs[i]; } R_SetFlareCoeff(); } /* ================== RB_AddFlare This is called at surface tesselation time ================== */ float flaredsize; // leilei - dirty flare fix for widescreens void RB_AddFlare(srfFlare_t *surface, int fogNum, vec3_t point, vec3_t color, vec3_t normal, int radii, int efftype, float scaled, int type) { int i; flare_t *f; vec3_t local; float d = 1; vec4_t eye, clip, normalized, window; backEnd.pc.c_flareAdds++; // fade the intensity of the flare down as the // light surface turns away from the viewer if(normal && (normal[0] || normal[1] || normal[2]) ) { VectorSubtract( backEnd.viewParms.or.origin, point, local ); VectorNormalizeFast(local); d = DotProduct(local, normal); // If the viewer is behind the flare don't add it. if(d < 0) return; } flaredsize = backEnd.viewParms.viewportHeight; R_TransformModelToClip( point, backEnd.or.modelMatrix, backEnd.viewParms.projectionMatrix, eye, clip ); // check to see if the point is completely off screen for ( i = 0 ; i < 3 ; i++ ) { if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) { return; } } R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window ); if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth || window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) { return; // shouldn't happen, since we check the clip[] above, except for FP rounding } // see if a flare with a matching surface, scene, and view exists for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) { break; } } // allocate a new one if (!f ) { if ( !r_inactiveFlares ) { // the list is completely full return; } f = r_inactiveFlares; r_inactiveFlares = r_inactiveFlares->next; f->next = r_activeFlares; r_activeFlares = f; f->surface = surface; f->frameSceneNum = backEnd.viewParms.frameSceneNum; f->inPortal = backEnd.viewParms.isPortal; f->addedFrame = -1; } if ( f->addedFrame != backEnd.viewParms.frameCount - 1 ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 2000; } f->addedFrame = backEnd.viewParms.frameCount; f->fogNum = fogNum; f->ftype = efftype; VectorCopy(point, f->origin); VectorCopy( color, f->color ); if ( (r_flaresDlightFade->integer) && (type == 1) ) { // leilei - dynamic light flares fading instantly f->fadeTime = -666; } if (!pvrhack) // leilei - don't do this on powervr VectorScale( f->color, d, f->color ); // save info needed to test f->windowX = backEnd.viewParms.viewportX + window[0]; f->windowY = backEnd.viewParms.viewportY + window[1]; f->radius = radii * scaled * 0.17; f->eyeZ = eye[2]; f->theshader = tr.flareShader; f->type = type; if (f->type == 0) f->theshader = surface->shadder; else f->theshader = tr.flareShader; if ( (type == 1) && (r_flaresDlightScale->value) ) { // leilei - dynamic light flare scale float ef = r_flaresDlightScale->value; if (ef > 1.0f) ef = 1.0f; if (ef < 0.01f) ef = 0.01f; f->radius *= ef; } if ( (type == 1) && (r_flaresDlightOpacity->value) ) { // leilei - dynamic light flare scale float ef = r_flaresDlightOpacity->value; if (ef > 1.0f) ef = 1.0f; if (ef < 0.1f) ef = 0.1f; f->color[0] *= ef; f->color[1] *= ef; f->color[2] *= ef; } // if ( (r_flaresDlightShrink->integer) && (type == 1) ) // leilei - dynamic light flares shrinking when close // { // } } /* ================== RB_AddDlightFlares ================== */ void RB_AddDlightFlares( void ) { dlight_t *l; int i, j, k; fog_t *fog = NULL; if ( !r_flaresDlight->integer ) { // leilei - dynamic light flares will be separate from flares return; } l = backEnd.refdef.dlights; if(tr.world) fog = tr.world->fogs; for (i=0 ; inumfogs ; j++ ) { fog = &tr.world->fogs[j]; for ( k = 0 ; k < 3 ; k++ ) { if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) { break; } } if ( k == 3 ) { break; } } if ( j == tr.world->numfogs ) { j = 0; } } else j = 0; RB_AddFlare( (void *)l, j, l->origin, l->color, NULL, l->radius * 0.6, r_flaresDlight->integer, 1.0f, 1); } } /* =============================================================================== FLARE BACK END =============================================================================== */ void CM_Trace( trace_t *results, const vec3_t start, const vec3_t end, vec3_t mins, vec3_t maxs, clipHandle_t model, const vec3_t origin, int brushmask, int capsule, sphere_t *sphere ); /* ================== RB_TestFlareFast faster simple one. ================== */ static void RB_TestFlareFast( flare_t *f, int dotrace ) { float depth; qboolean visible; float fade; float screenZ; backEnd.pc.c_flareTests++; // doing a readpixels is as good as doing a glFinish(), so // don't bother with another sync glState.finishCalled = qfalse; if (f->type == 2) dotrace = 0; // sun cant trace // leilei - do trace, then complain if (dotrace) { trace_t yeah; CM_Trace( &yeah, f->origin, backEnd.or.viewOrigin, NULL, NULL, 0, f->origin, 1, 0, NULL ); if (yeah.fraction < 1) { visible = 0; return; } else { visible = 1; } } // leilei - delay hack, to speed up the renderer if (backEnd.refdef.time > f->delay) { // read back the z buffer contents qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth ); f->delay = backEnd.refdef.time + r_flareDelay->value; screenZ = backEnd.viewParms.projectionMatrix[14] / ( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] ); visible = ( -f->eyeZ - -screenZ ) < 24; if ( visible ) { if ( !f->visible ) { f->visible = qtrue; f->fadeTime = backEnd.refdef.time - 1; } { fade = ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } } else { if ( f->visible ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 1; } fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } if ( fade < 0 ) { fade = 0; } if ( fade > 1 ) { fade = 1; } f->drawIntensity = fade; } else // leilei - continue drawing the flare from where we last checked { if (f->visible) { f->drawIntensity = 1; } else { f->drawIntensity = 0; } } } /* ================== RB_TestFlare ================== */ static void RB_TestFlare( flare_t *f, int dotrace ) { float depth; qboolean visible; float fade; float screenZ; backEnd.pc.c_flareTests++; // doing a readpixels is as good as doing a glFinish(), so // don't bother with another sync glState.finishCalled = qfalse; if (f->type == 2) dotrace = 0; // sun cant trace // leilei - do trace, then complain if (dotrace) { trace_t yeah; CM_Trace( &yeah, f->origin, backEnd.or.viewOrigin, NULL, NULL, 0, f->origin, 1, 0, NULL ); if (yeah.fraction < 1) { visible = 0; return; } else { visible = 1; } } // read back the z buffer contents qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth ); screenZ = backEnd.viewParms.projectionMatrix[14] / ( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] ); visible = ( -f->eyeZ - -screenZ ) < 24; if ( visible ) { if ( !f->visible ) { f->visible = qtrue; f->fadeTime = backEnd.refdef.time - 1; } { fade = ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } } else { if ( f->visible ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 1; } fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } if ( fade < 0 ) { fade = 0; } if ( fade > 1 ) { fade = 1; } f->drawIntensity = fade; } static void RB_TestFlareTraceOnly( flare_t *f ) { qboolean visible; float fade; backEnd.pc.c_flareTests++; // doing a readpixels is as good as doing a glFinish(), so // don't bother with another sync glState.finishCalled = qfalse; // read from a traceline trace_t yeah; CM_Trace( &yeah, f->origin, backEnd.or.viewOrigin, NULL, NULL, 0, f->origin, 1, 0, NULL ); if (yeah.fraction < 1) { visible = 0; return; } else { visible = 1; } if ( visible ) { if ( !f->visible ) { f->visible = qtrue; f->fadeTime = backEnd.refdef.time - 1; } { fade = ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } } else { if ( f->visible ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 1; } fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } if ( fade < 0 ) { fade = 0; } if ( fade > 1 ) { fade = 1; } f->drawIntensity = fade; } /* ================== RB_RenderFlare ================== */ void RB_RenderFlare( flare_t *f ) { float size; vec3_t color; int iColor[3]; float distance, intensity, factor; byte fogFactors[3] = {255, 255, 255}; int ind=0; int alphcal; backEnd.pc.c_flareRenders++; flaredsize = backEnd.viewParms.viewportHeight * (f->radius * 0.06); float flaredsize2 = backEnd.viewParms.viewportHeight; // We don't want too big values anyways when dividing by distance. if(f->eyeZ > -1.0f) distance = 1.0f; else distance = -f->eyeZ; if ( (r_flaresDlightShrink->integer) && (f->type == 1) ) { // leilei - dynamic light flares shrinking when close float newd = distance / (48.0f); if (newd > 1) newd = 1.0f; flaredsize *= newd; } if(!f->radius) f->radius = 0.0f; // leilei - don't do a radius if there is no radius at all! // calculate the flare size.. /* * This is an alternative to intensity scaling. It changes the size of the flare on screen instead * with growing distance. See in the description at the top why this is not the way to go. */ // size will change ~ 1/r. if (r_flareMethod->integer == 1 || r_flareMethod->integer == 4 ) { // The "not the way to go" method. // seen in EF size = flaredsize * (r_flareSize->value / (distance * -2.0f)); } else if (r_flareMethod->integer == 2) { // Raven method size = flaredsize * ( r_flareSize->value/640.0f + 8 / -f->eyeZ ); } else { size = flaredsize * ( (r_flareSize->value) /640.0f + 8 / distance ); } /* * As flare sizes stay nearly constant with increasing distance we must decrease the intensity * to achieve a reasonable visual result. The intensity is ~ (size^2 / distance^2) which can be * got by considering the ratio of * (flaresurface on screen) : (Surface of sphere defined by flare origin and distance from flare) * An important requirement is: * intensity <= 1 for all distances. * * The formula used here to compute the intensity is as follows: * intensity = flareCoeff * size^2 / (distance + size*sqrt(flareCoeff))^2 * As you can see, the intensity will have a max. of 1 when the distance is 0. * The coefficient flareCoeff will determine the falloff speed with increasing distance. */ factor = distance + size * sqrt(flareCoeff); if (r_flareMethod->integer == 4) // leilei - EF didn't scale intensity on distance. Speed I guess intensity = 1; else intensity = flareCoeff * size * size / (factor * factor); if (r_flareMethod->integer == 1) { // leilei - stupid hack to fix the not the way method if (intensity > 1) intensity = 1; } if (pvrhack) VectorScale(f->color, 1, color ); else VectorScale(f->color, f->drawIntensity * intensity, color); // Calculations for fogging if(tr.world && f->fogNum > 0 && f->fogNum < tr.world->numfogs) { tess.numVertexes = 1; VectorCopy(f->origin, tess.xyz[0]); tess.fogNum = f->fogNum; RB_CalcModulateColorsByFog(fogFactors); // We don't need to render the flare if colors are 0 anyways. if(!(fogFactors[0] || fogFactors[1] || fogFactors[2])) return; } iColor[0] = color[0] * fogFactors[0]; iColor[1] = color[1] * fogFactors[1]; iColor[2] = color[2] * fogFactors[2]; if (pvrhack) alphcal = f->drawIntensity * tr.identityLight * 255; // Calculate alphas from intensity instead else alphcal = 255; // Don't mess with alpha. float halfer = 1; if (f->ftype == 5 || f->ftype == 6 || f->ftype == 7 || f->ftype == 166) { RB_BeginSurface( tr.flareShaderAtlas, f->fogNum ); halfer = 0.5f; } else { if (r_flareQuality->integer) { // leilei - high quality flares get no depth testing int index; for(index = 0; index theshader->numUnfoggedPasses; index++) { f->theshader->stages[index]->adjustColorsForFog = ACFF_NONE; f->theshader->stages[index]->stateBits |= GLS_DEPTHTEST_DISABLE; } } RB_BeginSurface( f->theshader, f->fogNum ); halfer = 1; } // FIXME: use quadstamp? tess.xyz[tess.numVertexes][0] = f->windowX - size; tess.xyz[tess.numVertexes][1] = f->windowY - size; tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX - size; tess.xyz[tess.numVertexes][1] = f->windowY + size; tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 1 * halfer; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX + size; tess.xyz[tess.numVertexes][1] = f->windowY + size; tess.texCoords[tess.numVertexes][0][0] = 1 * halfer; tess.texCoords[tess.numVertexes][0][1] = 1 * halfer; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX + size; tess.xyz[tess.numVertexes][1] = f->windowY - size; tess.texCoords[tess.numVertexes][0][0] = 1 * halfer; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 1; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 3; ind+=4; // reflections -- tcpparena if(f->ftype == 2 || f->ftype == 4) { // renders sharp lens flare. float cx, cy; float dx, dy; float size2; const float poses[]= {-.15f, 0.6f, -.1f, -.6f, -1.8f}; const float sizes[]= {0.14f, 0.2f, 0.1f, 0.2f, 1.0f}; int brightness1[]= {8,25, 40, 26, 10}; // red int brightness2[]= {15,23, 25, 30, 5}; // green int brightness3[]= {12,20, 30, 28, 10}; // blue const float r3_2=0.866025403784439f; int n; cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1); cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1); for(n=0; n<5; n++) { dx=(f->windowX-cx)*poses[n]+cx; dy=(f->windowY-cy)*poses[n]+cy; size2=sizes[n]*backEnd.viewParms.viewportWidth*.25f; brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value); brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value); brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value); tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx-size2*.5f; tess.xyz[tess.numVertexes][1] = dy-size2*r3_2; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2*.5f; tess.xyz[tess.numVertexes][1] = dy-size2*r3_2; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2*.5f; tess.xyz[tess.numVertexes][1] = dy+size2*r3_2; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx-size2*.5f; tess.xyz[tess.numVertexes][1] = dy+size2*r3_2; tess.texCoords[tess.numVertexes][0][0] = .5f; tess.texCoords[tess.numVertexes][0][1] = .5f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 1+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 3+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 4+ind; tess.indexes[tess.numIndexes++] = 3+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 5+ind; tess.indexes[tess.numIndexes++] = 4+ind; tess.indexes[tess.numIndexes++] = 0+ind; ind+=6; } } if(f->ftype == 3 || f->ftype == 4) { // renders fuzzy lens flare. float cx, cy; float dx, dy; float size2; const float poses[]= {1.7f, -0.2f}; const float sizes[]= {1.2f, 0.2f}; int brightness1[]= {25, 40}; // red int brightness2[]= {35, 10}; // green int brightness3[]= {30, 15}; // blue int n; cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1); cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1); for(n=0; n<2; n++) { dx=(f->windowX-cx)*poses[n]+cx; dy=(f->windowY-cy)*poses[n]+cy; size2=sizes[n]*flaredsize2*.25f; brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value); brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value); brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value); tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy-size2; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy+size2; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 1.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy+size2; tess.texCoords[tess.numVertexes][0][0] = 1.f; tess.texCoords[tess.numVertexes][0][1] = 1.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy-size2; tess.texCoords[tess.numVertexes][0][0] = 1.f; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 1+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 3+ind; ind+=4; } } float drak; if(f->ftype == 5 || f->ftype == 6 || f->ftype == 7 || f->ftype == 166) { // renders special atlas lens flare like fuzzy but not fuzzy int modess; if (f->ftype == 6) modess = 1; // mono rings else if (f->ftype == 7 || f->ftype == 166) modess = 2; // force normal colored rings else modess = 0; // colorable colored rings float cx, cy; float dx, dy; float size2; float poses[]= {-1.0f, -0.75f, -0.64f, -0.57f, -0.37f, -0.35f, -0.3f, 1.2f, -.21f, 0.15f, .38f, .56f, .52f, 0.6f, 1.2f, 1.37f}; float sizes[]= {1.15f, 0.7f, 0.2f, 0.35f, 0.24f, .86f, .357f, 2.3f, 0.15f, 0.09f, 0.21f, 0.7f, 0.37f, 0.23f, 0.3f, 1.2f}; float atlases[]= {4, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 7, 8, 2, 3, 2}; float downsize1 = 0.25f; float downsize2 = 0.25f; int brightness1[]= {16, 5, 6, 18, 18, 38, 18, 12, 24, 24, 18, 3, 3, 0, 12, 12}; int brightness2[]= {16, 32, 8, 17, 17, 37, 17, 11, 28, 28, 17, 3, 3, 0, 12, 10}; int brightness3[]= {27, 3, 24, 0, 0, 17, 0, 4, 28, 28, 0, 17, 12, 12, 10, 10}; int n; vec3_t colarz; cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1); cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1); for(n=0; n<16; n++) { dx=(f->windowX-cx)*poses[n]+cx; dy=(f->windowY-cy)*poses[n]+cy; size2=sizes[n]*flaredsize2*.25f; drak = f->radius * 0.07; if (atlases[n] == 1) { downsize1 = 1; downsize2 = 1; }; if (atlases[n] == 3) { downsize1 = 1; downsize2 = -1; }; if (atlases[n] == 4) { downsize1 = -1; downsize2 = -1; }; if (atlases[n] == 2) { downsize1 = -1; downsize2 = 1; }; if (modess == 1) { brightness1[n] = brightness1[n] + brightness2[n] + brightness3[n] * 0.0100; brightness2[n] = brightness1[n]; brightness3[n] = brightness1[n]; } brightness1[n]=(int)(brightness1[n]*r_lensReflectionBrightness->value) * drak; brightness2[n]=(int)(brightness2[n]*r_lensReflectionBrightness->value) * drak; brightness3[n]=(int)(brightness3[n]*r_lensReflectionBrightness->value) * drak; if (modess == 2) { iColor[0] = 32.0f; iColor[1] = 32.0f; iColor[2] = 32.0f; } if (pvrhack) { if (modess == 2) { colarz[0] = ceil(iColor[0]*brightness1[n]); colarz[1] = ceil(iColor[1]*brightness2[n]); colarz[2] = ceil(iColor[2]*brightness3[n]); } else { colarz[0] = ceil(iColor[0]); colarz[1] = ceil(iColor[1]); colarz[2] = ceil(iColor[2]); } alphcal=r_lensReflectionBrightness->value * drak * 56; } else { colarz[0] = (iColor[0]*brightness1[n])>>8; colarz[1] = (iColor[1]*brightness2[n])>>8; colarz[2] = (iColor[2]*brightness3[n])>>8; } tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy-size2; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = colarz[0]; tess.vertexColors[tess.numVertexes][1] = colarz[1]; tess.vertexColors[tess.numVertexes][2] = colarz[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy+size2; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 0.5f * downsize2; tess.vertexColors[tess.numVertexes][0] = colarz[0]; tess.vertexColors[tess.numVertexes][1] = colarz[1]; tess.vertexColors[tess.numVertexes][2] = colarz[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy+size2; tess.texCoords[tess.numVertexes][0][0] = 0.5f * downsize1; tess.texCoords[tess.numVertexes][0][1] = 0.5f * downsize2; tess.vertexColors[tess.numVertexes][0] = colarz[0]; tess.vertexColors[tess.numVertexes][1] = colarz[1]; tess.vertexColors[tess.numVertexes][2] = colarz[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy-size2; tess.texCoords[tess.numVertexes][0][0] = 0.5f * downsize1; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = colarz[0]; tess.vertexColors[tess.numVertexes][1] = colarz[1]; tess.vertexColors[tess.numVertexes][2] = colarz[2]; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 1+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 3+ind; ind+=4; } } if(f->ftype == 8 ) { // renders anamorphic flare // JUST LIKE TEH MOVEEZ!!!!!!!!! float cx, cy; float dx, dy; float size2; float size3; const float poses[]= {0.9f, 1.0f, 1.08f}; const float sizes[]= {1.2f, 6.0f, 4.0f}; const float sizes2[]= {1.2f, 0.14f, 0.2f}; int brightness1[]= {16, 8, 5}; // red int brightness2[]= {23, 21, 11}; // green int brightness3[]= {30, 52, 32}; // blue int n; cx=backEnd.viewParms.viewportX+(backEnd.viewParms.viewportWidth>>1); cy=backEnd.viewParms.viewportY+(backEnd.viewParms.viewportHeight>>1); drak = f->radius * 0.02; for(n=0; n<3; n++) { dx=(f->windowX-cx)*poses[n]+cx; dy=(f->windowY-cy)*poses[n]+cy; size2=sizes[n]*flaredsize2 * drak*.25f; size3=sizes2[n]*flaredsize2 * (drak) *.25f; brightness1[n]=(int)(brightness1[n]*6 *r_lensReflectionBrightness->value); brightness2[n]=(int)(brightness2[n]*6 *r_lensReflectionBrightness->value); brightness3[n]=(int)(brightness3[n]*6 *r_lensReflectionBrightness->value); tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy-size3; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx-size2; tess.xyz[tess.numVertexes][1] = dy+size3; tess.texCoords[tess.numVertexes][0][0] = 0.f; tess.texCoords[tess.numVertexes][0][1] = 1.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy+size3; tess.texCoords[tess.numVertexes][0][0] = 1.f; tess.texCoords[tess.numVertexes][0][1] = 1.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = dx+size2; tess.xyz[tess.numVertexes][1] = dy-size3; tess.texCoords[tess.numVertexes][0][0] = 1.f; tess.texCoords[tess.numVertexes][0][1] = 0.f; tess.vertexColors[tess.numVertexes][0] = (iColor[0]*brightness1[n])>>8; tess.vertexColors[tess.numVertexes][1] = (iColor[1]*brightness2[n])>>8; tess.vertexColors[tess.numVertexes][2] = (iColor[2]*brightness3[n])>>8; tess.vertexColors[tess.numVertexes][3] = alphcal; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 1+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 0+ind; tess.indexes[tess.numIndexes++] = 2+ind; tess.indexes[tess.numIndexes++] = 3+ind; ind+=4; } } RB_EndSurface(); } /* ================== RB_RenderFlares Because flares are simulating an occular effect, they should be drawn after everything (all views) in the entire frame has been drawn. Because of the way portals use the depth buffer to mark off areas, the needed information would be lost after each view, so we are forced to draw flares after each view. The resulting artifact is that flares in mirrors or portals don't dim properly when occluded by something in the main view, and portal flares that should extend past the portal edge will be overwritten. ================== */ void RB_RenderFlares (void) { flare_t *f; flare_t **prev; qboolean draw; if ( !r_flares->integer && !r_flaresDlight->integer ) { return; } if ( (backEnd.refdef.rdflags & RDF_NOWORLDMODEL)) return; // leilei - don't draw flares in the UI. this prevents // a very very very very nasty error relating to the trace checks // leading to recursive startup in te OA3 menu if(r_flareCoeff->modified) { R_SetFlareCoeff(); r_flareCoeff->modified = qfalse; } // Reset currentEntity to world so that any previously referenced entities // don't have influence on the rendering of these flares (i.e. RF_ renderer flags). backEnd.currentEntity = &tr.worldEntity; backEnd.or = backEnd.viewParms.world; if (r_flaresDlight->integer) RB_AddDlightFlares(); // perform z buffer readback on each flare in this view draw = qfalse; prev = &r_activeFlares; while ( ( f = *prev ) != NULL ) { // throw out any flares that weren't added last frame if ( f->addedFrame < backEnd.viewParms.frameCount - 1 ) { *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } // don't draw any here that aren't from this scene / portal f->drawIntensity = 0; if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) { if (r_flareQuality->integer > 4) // highest flare quality - only frequent readpixels, no trace RB_TestFlare( f, 0 ); else if (r_flareQuality->integer == 4) // high flare quality - frequent readpixels, trace RB_TestFlare( f, 1 ); else if (r_flareQuality->integer == 3) // medium flare quality - delayed readpixels, no trace (faster for some cpus than 2) RB_TestFlareFast( f, 0 ); else if (r_flareQuality->integer == 2) // low flare quality - delayed readpixels, trace RB_TestFlareFast( f, 1 ); else if (r_flareQuality->integer == 1) // lower flare quality - no readpixels, trace RB_TestFlareTraceOnly( f ); else RB_TestFlareFast( f, 1 ); // lowest is actually a different surface flare defined elsewhere if ( f->drawIntensity ) { draw = qtrue; } else { // this flare has completely faded out, so remove it from the chain *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } } prev = &f->next; } if ( !draw ) { return; // none visible } if ( backEnd.viewParms.isPortal ) { qglDisable (GL_CLIP_PLANE0); } qglPushMatrix(); qglLoadIdentity(); qglMatrixMode( GL_PROJECTION ); qglPushMatrix(); qglLoadIdentity(); qglOrtho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight, -99999, 99999 ); for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal && f->drawIntensity ) { RB_RenderFlare( f ); } } qglPopMatrix(); qglMatrixMode( GL_MODELVIEW ); qglPopMatrix(); } void RB_DrawSunFlare( void ) { float size; float dist; vec3_t origin, vec1, vec2; vec3_t temp; int fetype; if ( !backEnd.skyRenderedThisView ) { return; } if ( !r_flareSun->integer ) { return; } if ( backEnd.doneSunFlare) // leilei - only do sun once return; fetype = r_flareSun->integer; qglLoadMatrixf( backEnd.viewParms.world.modelMatrix ); qglTranslatef (backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2]); dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3) size = dist * 0.4; VectorScale( tr.sunDirection, dist, origin ); PerpendicularVector( vec1, tr.sunDirection ); CrossProduct( tr.sunDirection, vec1, vec2 ); VectorScale( vec1, size, vec1 ); VectorScale( vec2, size, vec2 ); // farthest depth range qglDepthRange( 1.0, 1.0 ); { vec3_t coll; coll[0]= 1.0; coll[1]= 1.0; coll[2]= 1.0; coll[0]=tr.sunLight[0]/64; coll[1]=tr.sunLight[1]/64; coll[2]=tr.sunLight[2]/64; int g; for (g=0; g<3; g++) if (coll[g] > 1) coll[g] = 1; VectorCopy( origin, temp ); VectorSubtract( temp, vec1, temp ); VectorAdd( temp, vec2, temp ); VectorCopy( origin, sunorg ); VectorSubtract( sunorg, backEnd.viewParms.or.origin, sunorg ); VectorCopy( backEnd.viewParms.or.origin, sunorg ); VectorAdd( origin, sunorg, sunorg ); size = coll[0] + coll[1] + coll[2] * 805; RB_AddFlare( (void *)NULL, 0, sunorg, coll, NULL, size, fetype, 1.0f, 2); } // back to normal depth range qglDepthRange( 0.0, 1.0 ); backEnd.doneSunFlare = qtrue; }